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Preface

Welcome

On behalf of the organizing committee of the 12th Graph Theory and Algebraic Combinatorics Con-
ference (GTACC12), we are pleased to warmly welcome the participants to Tafresh, hoping that their
stay will be comfortable and enjoyable.
GTACC12 is held in the department of Mathematics at Tafresh University on 7th and 8th of February
2024. The conference provides a forum for mathematicians, scholar students, and multi-disciplinary re-
searchers to present and discuss their recent results regarding all aspects of Combinatorics, Algebraic
Combinatorics, Graph Theory, Algebraic Graph Theory, and Algorithmic Graph Theory.
The secretary office of the conference received 70 submissions for oral presentation where 57 have been
accepted by the scientific committee. There are six invited keynote speakers from Iran. We have made
every effort to make the present conference as worthwhile as possible.
It is our pleasure to express our thanks to all whose help has made this gathering possible, particularly, Dr.
Soheil Vasheghani Farahani the president of Tafresh University for his valuable and unique support and
excellent suggestions, the reviewers for their contributions together with providing valuable suggestions
and comments to the authors, all the authors of submitted papers, participants, and finally our colleagues
in the department of Mathematics, especially, the website manager Dr. Ali Khatibi for his excellent efforts
and board of directors for accompaniment and encouragement.
Our special gratitude is going to Mrs. Amene Alidadi, Fateme Eskandari, Soheir Rouhani, and Narges
Eshaghi for worthy and significant contributions.

The conference will not achieve its scientific momentum and success without your expertise and active
participation.

Vice-Chair of Conference: Hassan Arianpoor
Executive Chair: Mohammad Habibi
Scientific Chair: Saeid Alikhani
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Automorphism group in complex networks

Modjtaba Ghorbani∗, Razie Alidehi-Ravandi

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran
16785-163, Iran

E-mail:mghorbani@sru.ac.ir

Abstract

This article examines the symmetry structure of real-world complex networks, a topic that has
not been thoroughly explored despite the prevalence of symmetry in such networks. It delves into
network symmetry through the automorphism group of the underlying graph and identifies essential
symmetries, which are then used to break down the automorphism group into irreducible factors.
This breakdown enables efficient handling of large automorphism groups in real-world networks. It
associates symmetric subgraphs with each factor in the decomposition and explores their generic struc-
ture. Furthermore, by examining automorphism group orbits, it investigates the connection between
network symmetry and redundancy. The article also explores the relationship between graph spectra
and automorphism groups. The study demonstrates that if a graph has no repeated eigenvalues, then
all non-trivial automorphisms are involutions, and its automorphism group is an elementary abelian
2-group. Additionally, if all eigenvalues of a graph are simple, its automorphism group is Abelian.
These findings offer valuable insights into the relationship between eigenvalues and automorphisms.

1 Introduction

The use of complex networks to model the underlying topology of ”real-world” complex systemsfrom
social interaction networks such as scientific collaboration networks [9, 10] to biological regulatory net-
works [6] and technological networks such as the internet [12]has attracted much current research interest
[1], [11], [13]. Previous studies have highlighted the fact that seemingly disparate networks often have
certain features in common including (amongst others): the ”small-world” property [14]; the power-law
distribution of vertex degrees [3]; and network construction from motifs [8].

Identification of universal structural properties such as these allows generic network properties to
be decoupled from system-specific features. In this present work we consider the symmetry structure
of a variety of real-world networks and find that a certain degree of symmetry is also ubiquitous in
complex systems. Although the symmetry structure of some types of well-ordered networks has received
some attention [5, 7], a systematic study of the symmetry structure of real-world complex networkswhich
typically contain ordered and disordered elementshas not yet been undertaken.

∗Speaker
subjclass[2010]: 05C31, 05C60
keywords: Complex network, Symmetry, Automorphism group, graph eigenvalue
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This paper therefore investigates the origin and form of real-world network symmetry and its effect on
network function. We consider network symmetry via the automorphism group of the underlying graph.
Firstly, we identify essential network symmetries and use these symmetries to derive a natural direct
product decomposition of the automorphism group into irreducible factors. This decomposition is per
se a very efficient way to handle large automorphism groups of real-world networks. We then associate
with each factor in this decomposition a symmetric subgraphthe subgraph on which the factor subgroup
acts non-triviallyand investigate the generic structure of symmetric subgraphs. Finally, by considering
automorphism group orbits we investigate the relationship between network symmetry and redundancy.

As a fundamental object in mathematics and computer science, graphs have various practical appli-
cations in different fields such as chemistry [2], biology [17], and economics [4]. One approach to study
graphs is through graph invariants which are particular numerical, spatial, or combinatorial properties as-
sociated with graphs. Graph invariants are useful in a variety of applications, such as molecular structure
prediction, network optimization, and data analysis.

In this article, graphs presented are both simple and connected. This means that they are devoid of
any loops or duplicate edges between the same vertices.

Let G be a graph and A its adjacency matrix. The spectrum of G is defined as the set of eigenvalues
of A denoted by Spec(G) = {λ1, λ2, . . . , λn}, where n is the order of A. The spectral radius of G is the
maximum absolute value of its eigenvalues denoted by λ1.

The eccenteric version of extended adjacency matrix A, is defined as follows:

Aε
ex =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε2u + ε2v
εuεv

if u ∼ v

0 otherwise
.

A vertex-transitive graph is a type of graph in which, for every pair of vertices, there exists an
automorphism of the graph that maps one vertex to the other.

2 Main results

In this section, we present some new results on the properties of graphs and their automorphism groups.
Our first theorem, which is a well-known result in the literature, states that if a graph has no repeated
eigenvalues, then all of its non-trivial automorphisms are involutions, and equivalently, its automorphism
group is an elementary abelian 2-group.

Our second theorem establishes a relationship between the automorphism group and the extended
adjacency matrix of a graph. Specifically, if α ∈ Aut(G) is an automorphism of the graph G, then the
corresponding permutation matrix Pα satisfies Aε

ex.Pα = Pα.A
ε
ex.

Our third theorem asserts that if all eigenvalues of G are simple, then the automorphism group
G∗ = Aut(G) is Abelian. This result follows from our second theorem and the fact that if Aε

ex has all
distinct eigenvalues, then every non-trivial automorphism has order 2 (i.e., it is an involution).

The two corollaries that follow from our third theorem provide additional insights into the relationship
between eigenvalues and automorphisms. The first corollary states that if all eigenvalues of Aε

ex are simple,
then the automorphism group Aut(G) is Abelian and every non-trivial automorphism has order 2. The
second corollary asserts that if η is a simple eigenvalue of Aε

ex, then for each automorphism σ ∈ Aut(G),
the corresponding permutation matrix Pσ maps an eigenvector corresponding to η to a linear combination
of itself and another eigenvector corresponding to η.

Theorem 2.1. [15, 16, 18] If a multigraph has no repeated eigenvalues then all of its non-trivial auto-
morphisms are involutions; equivalently, its automorphism group is an elementary abelian 2-group.

Theorem 2.2. If α ∈ Aut(G) and Pα is a permutation matrix correspond to α, then Aε
ex.Pα = Pα.A

ε
ex.

Theorem 2.3. Let G∗ = Aut(G). If all eigenvalues of G are simple, then G∗ is Abelian.

12
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Corollary 1. Since the matrix Aε
ex has all distinct eigenvalues, then the automorphism group Aut(G) is

Abelian and every non-trivial automorphism has order 2.

Corollary 2. Suppos η is a simple eigenvalue of Aε
ex. Then for each automorphism σ ∈ Aut(G) and

permutation matrix Pσ, by Lemma Aε
exv = ηv yields that PσA

ε
exv = Aε

exPσv. So both v and Pσv are
eigenvectors correspond to η. Since m(η) = 1, we conclude that v and Pσv are linear dependent. Hence,
there is an scaler µ ∈ R
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Investigating a Conjecture Regarding Graph Energy
Mohammad Ali Hosseinzadeh∗

Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol,
Iran

E-mail: hosseinzadeh@ausmt.ac.ir

Abstract

The energy of a graph G, represented by E(G), is defined as the total sum of the absolute values
of all eigenvalues associated with G. A conjecture was made in (MATCH Commun. Math. Comput.
Chem. 83 (2020) 631–633), proposing that for any graph G with a maximum degree ∆(G) and a
minimum degree δ(G), where the adjacency matrix of G is non-singular, the energy E(G) is greater
than or equal to the sum of ∆(G) and δ(G). Furthermore, the conjecture suggests that this equality
holds true if and only if G is a complete graph. Researchers have been actively attempting to prove
this conjecture for various classes of graphs. Here, we highlight some of their endeavors.

1 Introduction

Consider a graph G with its vertex set denoted as V (G) and its edge set denoted as E(G). The adjacency
matrix of the graph G of order n, denoted as A(G) = [aij], is an n×n matrix. The entry aij of this matrix
is 1 if the vertices vi and vj are connected by an edge in E(G), and it is 0, otherwise. The eigenvalues of
A(G) are equivalent to the eigenvalues of the graph G. The spectral radius of G is defined as the greatest
eigenvalue of G. The graph L(G), known as a line graph, is derived from the graph G by associating each
edge of G with a vertex in L(G). In L(G), two vertices are connected if and only if their corresponding
edges in G share a common vertex. A graph that can be depicted on a plane in a manner where the edges
only intersect at points representing their shared endpoints is known as a planar graph.

The energy of the graph G, denoted as E(G), is defined as the sum of the absolute values of the
eigenvalues of A(G). The concept of graph energy was initially introduced by Gutman in 1978 [6]. For
further insights into the properties of graph energy, refer to [1, 4, 7]. A; so, various lower bounds exist for
the energy of graphs. As instance, Zhou investigated the problem of bounding the graph energy based on
the minimum degree and other parameters [9].

2 Main results

In a study conducted by [8], it was demonstrated that for a connected graph G, the energy of G is greater
than or equal to twice the minimum degree of G. Furthermore, the equality holds if and only if G is

∗Speaker
subjclass[2010]: 05C50, 05C70
keywords: Graph energy, Non-singular graphs, Adjacency matrix
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a complete multipartite graph with equal-sized parts. Another improvement on this lower bound was
presented in [5], where it was proven that if G is a connected graph with an average degree of d, then the
energy of G is greater than or equal to twice d. Similarly, the equality holds if and only if G is a complete
multipartite graph with equal-sized parts. Additionally in [5], authors put forth an interesting conjecture
in the same publication.

Conjecture 2.1. [5] For any graph G whose adjacency matrix is non-singular, the energy of G is greater
than or equal to the sum of the maximum and minimum degrees of G. Also, the equality holds if and only
if G is a complete graph.

According to the research conducted by the authors in a previous study [3], it was demonstrated that
the Conjecture 2.1 is valid for planar graphs, graphs without triangles, and graphs without quadrangles.

Theorem 2.2. [3] The Conjecture 2.1 holds for triangle-free graphs, quadrangle-free graphs and planar
graphs.

Theorem 2.3. [3] The Conjecture 2.1 is valid for a graph that possesses an integral spectral radius.

The authors of [2] have made improvements to Conjecture 2.1 regarding line graphs by eliminating
the constraint of non-singularity. In the next theorem, they present the enhanced version as follows:

Theorem 2.4. For any line graph L(G) with a minimum order of 7 and maximum degree ∆(L(G)),
along with a minimum degree δ(L(G)), where G is a connected graph,

E(L(G)) ≥∆(L(G)) + δ(L(G)).

The equality condition is satisfied only if L(G) is a complete graph.
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On the chromatic number of almost stable general

Kneser hypergraphs
Amir Jafari∗

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

E-mail: amirjafa@gmail.com

Abstract

Let n ≥ 1 and s ≥ 1 be integers. An almost s-stable subset A of [n] = {1, . . . , n} is a subset such
that for any two distinct elements i, j ∈ A, one has ∣i − j∣ ≥ s. For a family F of non-empty subsets of
[n] and an integer r ≥ 2, the chromatic number of the r-uniform Kneser hypergraph KGr(F), whose
vertex set is F and whose edge set is the set of {A1, . . . ,Ar} of pairwise disjoint elements in F , has
been studied extensively in the literature and Abyazi Sani and Alishahi were able to give a lower bound
for it in terms of the equatable r-colorability defect, ecdr(F). In this talk, the methods of Chen for
the special family of all k-subsets of [n], are modified to give lower bounds for the chromatic number
of almost stable general Kneser hypergraph KGr(Fs) in terms of ecds(F). Here Fs is the collection
of almost s-stable elements of F . We also propose a generalization of a conjecture of Meunier.

1 Introduction and Main results

Let n ≥ 1, s ≥ 1 and r ≥ 2 be integers. Let F be a family of non-empty subsets of [n] = {1, . . . , n}. We say
that a subset A of [n] is s-stable if for all distinct elements i and j in A, one has

s ≤ ∣i − j∣ ≤ n − s.

If we only demand ∣i − j∣ ≥ s, then A is said to be almost s-stable. We use the notation Fs for the almost
s-stable subsets in F . The r-uniform Kneser hypergraph KGr(Fs) is an r-uniform hypergraph whose
vertex set is Fs and whose edge is the set of all pairwise disjoint subsets {A1, . . . ,Ar} in Fs. We use the
notion of the equitable r-colorability defect of F , defined by Abyazi Sani and Alishahi in [1]. It is defined
as follows.

Definition 1.1. The r-colorability defect of a family of non-empty subsets F of [n] is defined to be the
minimum size of a subset X0 ⊆ [n] such that there is an equitable partition

[n]/X0 =X1 ∪ ⋅ ⋅ ⋅ ∪Xr

so that there are no F ∈ F and 1 ≤ i ≤ r such that F ⊆ Xi. Here equitable means that ∣∣Xi∣ − ∣Xj ∣∣ ≤ 1 for
all 1 ≤ i ≤ j ≤ r.

∗Speaker
subjclass[2010]:
keywords: Chromatic Number, Tucker’s lemma, Topological Graph Theory
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Our goal here is to prove the following two theorems.

Theorem 1.2. If r is a power of 2 and s is a multiple of r, then

χ(KGr(Fs)) ≥ ⌈
ecds(F)
r − 1

⌉ .

It is plausible to make the following conjecture.

Conjecture 1.3. For any n ≥ 1, r ≥ 2, s ≥ r and any family F of subsets of [n], one has

χ(KGr(Fs)) ≥ ⌈
ecds(F)
r − 1

⌉ .

Remark 1.4. This conjecture for the special family of all k-subsets of {1, . . . , n} was made by Meunier
in [5]. A version of this conjecture with the topological r-colorability defect was made for a general family
and the s-stable part of the family by Frick in [4].

We also prove the following theorem.

Theorem 1.5. If r = p is a prime number and s ≥ 2 is an integer, then

χ(KGp(Fs)) ≥ ⌈
n − α1 − α2

p − 1
⌉

where α1 = (s − 1) ⌊n−ecd
p(F)

p
⌋ and α2 = ⌊(p − 1)n−ecd

p(F)+1
p

⌋.

Remark 1.6. If p = 2 and F is the family of all k-subsets of [n], then ecd2(F) = n − 2(k − 1), and hence
α1 = (s − 1)(k − 1) and α2 = k − 1. It follows that

χ(KG2(Fs)) ≥ n − s(k − 1) = ecds(F).

This gives a confirmation of the conjecture 1.3 for r = 2 and the family of all k-subsets of [n]. This was
proved by Chen in [3]. Also it is worthwhile to note that if n ≥ sk, then coloring each almost s-stable
k-subset with the value of its minimum element gives a proper coloring of KG2(Fs) with n − s(k − 1)
colors. So, in fact the above inequality is an equality.
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Abstract

One approach toward dealing with intractable graph problems is structural parameterization which
is defined as investigation of computational complexity of NP-hard graph problems measured as a
function of the structural properties of the input graph. The structure of a graph can be measured
using some well-known and well-studied parameters such as treewidth, tree-depth, clique-width, vertex
cover and neighborhood diversity. The main question, here, is that, for an NP-hard problem, what is
the algorithmic cost of generalizing a structural parameter of the input. In this talk, after introducing
some of these parameters, we give a short (and not thorough) survey on the tools such as DP and ILP
techniques using in investigation of the complexity of hard problems whose input space is confined
on a class of graphs with a specified structure (e.g. bounded treewidth graphs). Moreover, we give a
brief introduction to the theory of parameterized complexity and classifying NP-hard problems into
classes such as FPT and W[1]-hard in terms of their tractability with respect to structural parameters
of the input graph.
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Abstract

Let G = (V (G),E(G)) be a graph, and f be a map from V (G) to a set of labels (colors). The
map f is said to be a 2-distance coloring of G if the colors of the vertices of any P3 path are different
under f .

An injective coloring of a given graph G is a vertex coloring f of G such that no vertex v is adjacent
to two vertices u and w with f(u) = f(w). It has been shown that the injective coloring of G, is not
necessarily a proper coloring, and vice versa.

A map f ∶ V (G)→ {1,2,3, ..., k} is said to be a 2-distance injective k coloring of G if for a vertex v
and the vertices u,w,x, y, z, t, there exist a uvw-path of length 2 or a xyvzt path of length 4, then the
vertices u,w,x, y, z, t receive distinct colors. In other word, if we observe a path P3 = uvw, or a path
P5 = xyvzt in graph, then f(u), f(w), f(x), f(y), f(z) and f(t) are mutually distinct. The 2-distance
injective chromatic number of G, denoted by χ2i(G), is the least k such that G has a 2-distance
injective k-coloring.

In this talk we investigate some properties of 2-distance injective coloring of a graph G. The 2-
distance injective coloring versus to 2-distance coloring and injective coloring are investigated. Also 2-
distance injective coloring are studied in terms of other parameters such as order, degree, independence
number and etc.

1 Introduction

Throughout this paper, we consider G as a finite simple graph with vertex set V (G) and edge set E(G).
We use [11] as a reference for terminology and notation which are not explicitly defined here. The open
neighborhood of a vertex v is denoted by NG(v), and its closed neighborhood is NG[v] = NG(v)∪{v}. The
minimum and maximum degrees of G are denoted by δ(G) and ∆(G), respectively. Finally, for a given
set S ⊆ V (G), by G[S] we represent the subgraph of G induced by S. For any two vertices u and v of G,
we denote dG(u, v) the distance between u and v, that is the length of a shortest path joining u and v.

Graph coloring has many applications in various fields of life, such as timetabling, scheduling daily
life activities, scheduling computer processes, registering allocations to different institutions and libraries,

∗Speaker
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manufacturing tools, printed circuit testing, routing and wavelength, bag rationalization for a food man-
ufacturer, satellite range scheduling, and frequency assignment. These are some applications out of the
many that already exist and many to come. In fact, coloring has inspired many other fields.

A k-coloring of the vertices of G = (V,E) a graph is a function f ∶ V (G)→ {1,2,3, ...,K}. A k-coloring
f is a proper coloring, if and only if, for all edge xy ∈ E, f(x) ≠ f(y). In other words, the colors of the
vertices of all P2 paths in the graph are distinct. The chromatic number of G, denoted by χ(G), is the
minimum integer k such that G has a proper k-coloring.

The study of distance coloring was initiated by Kramer and Kramer ([7] and [6]) in 1969. A 2-distance
coloring (or, 2DC for short) of a graph G is a mapping of V (G) to a set of colors (nonnegative integers
for convenience) in such a way that any two vertices of distance at most two have different colors. The
minimum number of colors (nonnegative integers) k for which there is a 2DC is called the 2-distance

chromatic number χ2(G) of G. For any 2DC f ∶ V (G) → {1,⋯, k}, we write f = (V f
1 ,⋯, V

f
k ) in which

V f
i = {v ∈ V (G) ∶ f(v) = i} for each 1 ≤ i ≤ k. If there is no confuse with respect to the mapping f , we

omit the superscripts f and only write f = (V1,⋯, Vk).
The injective coloring was first introduced in 2002 by Hahn, Kratochvil, Siran, and Sotteau. An

injective k-coloring of a graph G = (V,E) is a function f ∶ V (G) → {1,2,3, ..., k} such that no vertex v is
adjacent to two vertices u and w with f(u) = f(w). In other words, we say that a colouring f of a graph
is injective if its restriction to the neighbourhood of any vertex is injective. Also we can say, if xyz is a
P3 path in graph G, then f(x) ≠ f(z). The injective chromatic number of G, denoted by χi(G), is the
minimum integer k such that G has an injective k-coloring. The injective coloring of G, is not necessarily
proper coloring. There are several references on injective coloring, [1, 2, 3, 4, 5, 8, 9, 10].

An obvious alternate way of looking at the injective chromatic number of a graph G is to consider the
common neighbour graph G(2) of G defined by V (G(2)) = V (G) and

E(G(2)) = {uv ∶ there is a path of length 2 in G joining u and v}

. Then, χi(G) = χ(G(2)).
Let u and w be two vertices and we say that u is a 2-distance neighborhood of w if dG(u,w) = 2.

We say that two vertices x, y have a common vertex v in a 2-distance neighborhood if there is a path
P5 = xuvwy in graph.

Definition 1.1. A map f ∶ V (G) → {1,2,3, ..., k} is said to be a 2-distance injective k coloring of G if
for a vertex v and the vertices u,w,x, y, z, t, there exist a uvw-path of length 2 or a xyvzt path of length
4, then the vertices u,w,x, y, z, t receive distinct colors. In other word, if we observe a path P3 = uvw, or
a path P5 = xyvzt in graph, then f(u), f(w), f(x), f(y), f(z) and f(t) are mutually distinct.
The 2-distance injective chromatic number of G, denoted by χ2i(G), is the least k such that G has a
2-distance injective k-coloring. The 2-distance injective chromatic number of G, denoted by χ2i(G), is
the least k such that G has a 2-distance injective k-coloring. Also the 2-distance injective coloring of G,
is not necessarily proper coloring, and vice versa.

An alternate way of looking at the 2-distance injective chromatic number of a graph G is to consider
a graph G(2i) = (V (2i)(G),E(2i)(G)), defined by vertex set, V (2i)(G) = V (G) and edge set as: for
u,w ∈ V (2i)(G), uw ∈ E(2i)(G) = E(G(2i)) if and only if there exists a path uvw, or a path uxvyw, or two
paths uvz and ptvrw in graph.
See the following example.
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It can be easy to see that, if f = χ2i-chromatic map of G, then f(v) = 1 = f(b), f(c) = 2, f(d) =
3, f(z) = 4, f(u) = 5, f(x) = 6, f(y) = 7, f(w) = 8.
Also we can see χ(G(2i)) = 8.

Let v be a vertex of G. Then we define N (2)(v) as the set of vertices of at most 2-distance neighborhood

of v and ∣N (2)(v)∣ as (1-2)-distance degree of v inG, deg(1-2)G (v) = deg(1-2)(v). Let δ(1-2)(G) and ∆(1-2)(G)
denote the minimum and maximum (1-2)-distance degree of G respectively. It is clear ∆(G) ≤∆(1-2)(G).

2 Main results

Let G be a graph. Then χ(G) ≤ χ2i(G).

Proposition 2.1. Let G be a graph of diameter at least 4. Then χ2(G) ≤ χ2i(G). For complete graph
Kn, (n ≠ 2 and cycle Cn, (n ≠ 4,10) we have χ2(G) = χ2i(G).

One of the problem may be as follows: Characterize graph G, with χ2(G) = χ2i(G).

A k-independent set of a graph G, is a subset, Ik, of the vertices of G such that the distance between
any two vertices of Ik in G is at least k + 1. Let I2 be the 2-independent set of G and α2 be the size of
the maximum 2-independent set of G.

Proposition 2.2. Let G be a graph of diameter 4 with independence number α2. Then, χ2i(G) ≥ α2.

Proposition 2.3. Let G be a graph of diameter at least 3 Then, χ2i(G) < ∣V (G)∣.

Proposition 2.4. Let G be a graph. Then, χ2i(G) = ∣V (G)∣ if and only if diameter of G is at most 4
and every edge of G is in a C5.

References
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Abstract

Let G be a connected graph of order at least 2. A G-free k-coloring of a graph H is a partition of
the vertex set of H into V1, . . . , Vk such that H[Vi], the subgraph induced on Vi, does not contain any
subgraph isomorphic to G. The G-free chromatic number of H, denoted by χG(H), is the minimum
number k for which H has a G-free k-coloring. As an extension of Brooks’ Theorem, in 1979, Catlin
showed that if H is neither an odd cycle nor a complete graph, then H has a proper ∆(H)-coloring
for which one of the color classes is a maximum independent set of H. In this talk, we show that a
Catlin-type theorem holds for G-free k-coloring of graphs.

In 1977, Borodin and Kostochka conjectured that any graph H with maximum degree ∆(H) ≥ 9
and without K∆(H) as a subgraph has chromatic number at most ∆(H) − 1. As an extension of this
conjecture, we pose the following natural question.
Question. Suppose thatH is a graph with maximum degree ∆(H) and clique number ω(H) such that
ω(H) ≤∆(H)−1. Assume that p1 ≥ p2 ≥ ⋯ ≥ pk ≥ 2 are k positive integers and ∑k

i=1 pi =∆(H)−1+k.
Is there a partition of V (H) into V1, V2, . . . , Vk such that for each 1 ≤ i ≤ k, H[Vi] is Kpi -free?

We provide a positive answer to this question when p1 + p2 ≥ 7. This result directly implies
χKp
(H) ≤ ⌈∆(H)−1

p−1 ⌉ for p ≥ 4 (where Kp is a complete graph on p vertices). When p1 +p2 ≤ 6, we offer

negative answers for some of cases.

This is a joint work with Yaser Rowshan.
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Abstract

In this paper, we introduce a generalization of the idempotent-divisor graph of a commutative ring
R by using the lower triangular matrices. Assume that R is a commutative ring with nonzero identity.
For n ∈ N, we denote the set of all lower triangular matrices of order n with entries in R byMLT

n (R).
We consider A to be a subset of MLT

n (R) consists of all lower triangular matrices whose entries on
the main diagonal are non-zero. Let e be an idempotent element of R. For n ∈ N, we define the graph
Γn
e (R) as a simple graph with vertex set

{X ∈ Rn ∣ ∃Y ∈ Rn,∃A ∈ A;XAY T = e or Y AXT = e}

and two distinct vertices X and Y are adjacent whenever there exists A ∈ A such that XAY T = e or
Y AXT = e. In this paper, we study the structure of the graph Γn

e (R), which is a a generalization of
the idempotent-divisor graph.

1 Introduction

Let R be a commutative ring with nonzero identity. By Z(R), U(R) and E(R), we mean the set of all
zero-divisor, unit and idempotent elements of R, respectively. The concept of a zero-divisor graph of a
commutative ring was introduced by Beck in [3]. However, he let all elements of a ring R be the vertices
of the graph and was mainly interested in colorings. In [2], Anderson and Livingston introduced and
studied the zero-divisor graph, which is denoted by Γ(R), as a simple graph with vertex set Z(R) ∖ {0}
and two distinct vertices a and b are adjacent if and only if ab = 0. Assume that e ∈ E(R). In [4], Kimball
and LaGrange defined the concept of an idempotent-divisor graph Γe(R) of R associated with e as a
generalization of the zero-divisor graph. Γe(R) is a simple graph with vertex-set {a ∈ R ∣ ∃b ∈ R; ab = e}
and two distinct vertices a and b are adjacent if and only if ab = e. Note that Γe(R) is the zero-divisor
graph of R when e = 0.

Let n ∈ N. We use the notationMLT
n (R) for the set of all lower triangular matrices of order n whose

entries are the elements of R. Let A be the subset ofMLT
n (R) consists of all lower triangular matrices of

order n whose entries on the main diagonal are non-zero. Assume that e ∈ E(R) is an idempotent of R.
For n ∈ N, we define the graph Γn

e (R) as a simple graph where X ∈ Rn is a vertex of Γn
e (R) if there exists
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A ∈ A and Y ∈ Rn such that XAY T = e or Y AXT = e. Also, two distinct vertices X and Y are adjacent
in Γn

e (R) if and only if there exists A ∈ A such that XAY T = e or Y AXT = e. Note that if n = 1, then
Γ1
e(R) is isomorphic to Γe(R), and so Γn

e (R) is a generalization of the idempotent-divisor graph. In [1],
the authors provide a generalization of the zero divisor graphs by using matrix theory, and if we ignore
the isolated vertices of this graph, then it is isomorphic to Γn

0 (R). Hence Γn
e (R) is also a generalization

of the graph which is introduced in [1]. So in this paper, we assume that n ⩾ 2 and e ≠ 0, and we study
the properties of Γn

e (R).
We use the standard terminology of graphs [5]. Let G be a graph and V (G) be the set of vertices

of G. For two distinct vertices x and y, let d(x, y) denote their distance, that is, the length of the
shortest path between x and y (we set d(x, y) ∶= ∞ if there is no such path). The diameter of G is
diam(G) = sup{d(x, y); x and y are distinct vertices of G}. The girth of G is the length of the shortest
cycle in G, denoted by gr(G) ( gr(G) =∞ if G has no cycles). Also, a graph G is called planar if it can
be drawn in the plane without any edge crossing. A remarkable characterization of the planar graphs was
given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains
no subdivision of K5 or K3,3. A clique of a graph is a complete subgraph of it and the number of vertices
in a largest clique of G is called the clique number of G and is denoted by ω(G).

2 Main results

In this section, we investigate some properties of the graph Γn
e (R), when R is a finite ring. We begin with

the following lemma.

Lemma 2.1. Assume that X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) are two distinct vertices of Γn
e (R)

such that there exists 1 ⩽ k ⩽ n with xk, yk ∈ U(R). Then X and Y are adjacent in the graph Γn
e (R).

Notation 2.2. Let 1 ⩽ i ⩽ n and X be a nonempty subset of R. We set

X(i) ∶= {(a1, . . . , ai, . . . , an) ∈ Rn;ai ∈X}.

Corollary 2.3. The following ststements hold.

(i) For each 1 ⩽ i ⩽ n, the induced subgraph of Γn
e (R) with vertex set U(R)(i), forms a clique in the

graph Γn
e (R).

(ii) ω(Γn
e (R)) ⩾ ∣U(R)∣∣R∣n−1.

Theorem 2.4. In the graph Γn
e (R), we have diam(Γn

e (R)) ⩾ 2 or diam(Γn
e (R)) =∞.

Theorem 2.5. Let R be a finite ring. Then gr(Γn
e (R)) = 3 if and only if n ⩾ 3 or ∣R∣ ⩾ 3. Otherwise,

gr(Γn
e (R)) =∞.

Theorem 2.6. If the graph Γn
e (R) is planar, then we have ∣U(R)∣ = 1 and n ⩽ 3.

Proposition 2.7. If R is a finite local ring, then Γn
e (R) is isomorphic to Γn

1 (R).

Let Zn = {1,2, . . . , n − 1} be the ring of integers module n ⩾ 2. In the rest of this section, we determine
the vertices of the graph Γ2

1
(Zn). For two integer s and t, the greatest common divisor of s and t is denoted

by gcd(s, t). Recall that for a non-zero element x of Zn, x is a unit element if and only if gcd(x,n) = 1
and also every non-unit element of Zn, is a zero divisor. So, the number of zero divisor elements of Zn is
equal to n−ϕ(n), where ϕ is the Euler function. We say d is a proper divisor of n, when 1 < d < n and d∣n.
Let d1, d2, . . ., dk be distinct proper divisor of n. For 1 ⩽ i ⩽ k, we define Adi = {x ∈ Zn ∣ gcd(x,n) = di}.
It is easy to see that Ad1 , Ad2 , . . ., Adk

are pairwise disjoint and

Z(Zn) ∖ {0} = Ad1 ∪Ad2 ∪ . . . ∪Adk
.

Lemma 2.8. [6, Proposition 1.2] For 1 ⩽ i ⩽ k, ∣Adi ∣ = ϕ( ndi
).
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Lemma 2.9. The element (x, y) ∈ Z2
n is a vertex of the graph Γ2

1
(Zn) if and only if gcd(x, y) ∈ U(Zn).

Proposition 2.10. The following statements hold.

(a) For (x1, x2) ∈ Z2
n, if x1 ∈ U(Zn) or x2 ∈ U(Zn), then (x1, x2) is a vertex of the graph Γ2

1
(Zn).

(b) For (x1, x2) ∈ A2
di
, where 1 ⩽ i ⩽ k, (x1, x2) is not a vertex of the graph Γ2

1
(Zn).

(c) For (x1, x2) ∈ Adi ×Adj , where 1 ⩽ i ≠ j ⩽ k, (x1, x2) is a vertex of the graph Γ2
1
(Zn) if and only if

gcd(di, dj) = 1.

(d) The elements (x1,0) and (0, x2) are the vertices of the graph Γ2
1
(Zn) if and only if x1, x2 ∈ U(Zn).
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Abstract

Let R be a commutative ring with nonzero identity. The co-maximal graph of R, denoted by Γ(R),
is a simple graph with all elements of R as vertices and two distinct vertices a and b are adjacent if
and only if Ra +Rb = R. Let Γ1(R) and Γ2(R) be the induced subgraphs of Γ(R) with vertex sets
U(R) and R ∖ U(R), respectively. In this paper, we completely characterize when the graphs Γ(R),
Γ1(R), Γ2(R) and Γ2(R) ∖ J(R) are line graphs or complement of line graphs.

1 Introduction

Let R be a commutative ring with non-zero identity. Let U(R), Max(R) and J(R) be the set of all
unit elements, the set of maximal ideals of R and the Jacobson radical of R, respectively. In [3], Sharma
and Bhatwadekar defined the co-maximal graph of R, denoted by Γ(R), which is a simple graph with all
elements of R as vertices and two distinct vertices a and b are adjacent if and only if Ra +Rb = R. Let
Γ1(R) and Γ2(R) be the induced subgraphs of Γ(R) with vertex sets U(R) and R ∖ U(R), respectively.
Clearly Γ1(R) is a complete subgraph of Γ(R). In [2], the authors studied the subgraph Γ2(R) and also
they investigate some properties of the graph Γ2(R) ∖ J(R), which is denoted by Γ3(R).

We use the standard terminology of graphs [4]. Let G be a graph. The line graph L(G) is a graph
such that each vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent if and only
if their corresponding edges are incident in G. Also, the complement of G, denoted by G, is the graph
has the same vertex set as G but whose edge set consists of the edges not present in G. In this paper, we
investigate when the graphs Γ(R), Γ1(R), Γ2(R) and Γ3(R) are line graphs. Also, we study when the
co-maximal graph is the complement of a line graph.

Throughout the paper, R is a finite commutative ring with non-zero identity and F is a finite field.
The field with q elements is denoted by Fq. Also, Zn denotes the ring of integers modulo n.
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2 Main results

In this section, we study when the graphs Γ(R), Γ1(R), Γ2(R) and Γ3(R) are line graphs or complement
of line graphs. In fact, we want to classify all finite commutative rings, whose co-maximal graphs are line
graphs or complement of line graphs. In order to do this, we will use one of the characterizations of line
graphs which was proved in [1].

Theorem 2.1. [1] Let G be a graph. Then G is the line graph of some graph if and only if none of the
nine graphs in Figure 1 is an induced subgraph of G.

Figure 1:

Theorem 2.2. Let R be a commutative ring with non-zero identity. Then Γ1(R) is a line graph and also
Γ(R) is a line graph if and only if R is one of the following rings.

F, Z4, Z2[X]/(x2), Z2 ×Z2.

Theorem 2.3. Let R ≅ R1 ×R2 × . . . ×Rn. Then Γ2(R) and Γ3(R) are line graphs if and only if one of
the following statements holds.

(i) R is one of the rings Z2 ×Z2 ×Z2, Z2 ×Z2, Z3 ×Z3, Z2 ×Z3, Z2 ×Z4 or Z2 × (Z2[x]/(x2)).

(ii) n = 1.
In the rest of this section, we investigate when the graphs Γ(R), Γ1(R), Γ2(R) and Γ3(R) are the

complement of a line graph. To do this, we use the following version of Theorem 2.1.

Theorem 2.4. [1] A graph G is the complement of a line graph if and only if none of the nine graphs
Gi, i = 1,2, . . . ,9, of Figure 2 is an induced subgraph of G.

Theorem 2.5. Let R be a commutative ring with non-zero identity. Then the co-maximal graph Γ(R)
and its subgraph Γ2(R) are the complement of a line graph if and only if one of the following statements
holds.

(i) ∣Max(R)∣ = 2 and J(R) = {0}.

(ii) R is a local ring.

Proposition 2.6. Γ1(R) is the complement of a line graph.

Theorem 2.7. Let R ≅ R1 ×R2 × . . . ×Rn. Then Γ3(R) is the complement of a line graph if and only if
one of the following statements holds.

(i) R ≅ Z2 ×Z2 ×Z2.

(ii) n = 1 or n = 2.
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Figure 2:
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Abstract

Let G = (V (G),E(G)) be a graph. A set B ⊆ V (G) is said to be a k-total limited packing in the
graph G if ∣B ∩N(v)∣ ≤ k for each vertex v of G. The k-total limited packing number Lk,t(G) is the
maximum cardinality of a k-total limited packing in G.

Here we show that The k-TOTAL LIMITED PACKING problem is NP-complete even for bipartite
graphs and for chordal graphs.

1 Introduction

Throughout this manuscript, we consider G as a finite simple graph with a vertex set V (G) and edge set
E(G). The order of graph is denoted by n and the size of graph is m.

The open neighborhood of a vertex v is denoted by N(v), and its closed neighborhood is N[v] =
N(v)∪ {v}. The minimum and maximum degrees of G are denoted by δ(G) and ∆(G), respectively. The
subgraph induced by S ⊂ V (G) in a graph G is denoted by G[S].

A set S ⊆ V is a dominating set if every vertex in V /S is adjacent to at least one vertex in S. The
domination number γ(G) is the minimum cardinality of a dominating set in G.

A set of vertices B ⊆ V (G) is called a packing (resp. an open packing) in G provided that N[u]∩N[v] =
∅ (resp. N(u) ∩N(v) = ∅) for each distinct vertices u, v ∈ V (G). The maximum cardinality of a packing
(resp. open packing) is called the packing number (resp. open packing number), denoted ρ(G) (resp.
ρo(G)). For more information about these topics, the reader can consult [2] and [3]. In 2010, Gallant
et al. ([1]) introduced the concept of limited packing in graphs. In fact, a set B ⊆ V (G) is said to be a
k-limited packing in the graph G if ∣B ∩N[v]∣ ≤ k for each vertex v of G. The k-limited packing number
Lk(G) is the maximum cardinality of a kLP in G. They also exhibited some real-world applications of
it in network security, market situation, NIMBY and codes. This concept was next investigated in many
papers. Similarly, a set B ⊆ V (G) is said to be a k-total limited packing if ∣B ∩N(v)∣ ≤ k for each vertex
v of G. The k-total limited packing number Lk,t(G) is the maximum cardinality of a kTLP in G. This
concept was first studied in [5]. It is easy to see that the latter two concepts are the same with the
concepts of packing and open packing when k = 1.

The corona product G ⊙H of two graphs G and H is obtained by taking one copy of G and ∣V (G)∣
copies of H, and joining vi ∈ V (G) to every vertex in the ith copy of H.
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Here we prove the problem of computing the k-total limited packing number is NP-hard, even for some
special families of graphs.

2 Main result

We consider the problem of deciding whether a graph G has a k-total limited packing set of cardinality
at least a given integer. That is stated in the following decision problem.

k-TOTAL LIMITED PACKING problem

INSTANCE: A graph G = (V (G),E(G)) and a positive integer z′.
QUESTION: Does G have a k-total limited packing set of cardinality at least z′?

We make use of the following decision problem which is proved to be NP-complete for bipartite graphs
and for chordal graphs (see [4]).

OPEN PACKING problem

INSTANCE: A graph G = (V (G),E(G)) of order n and a positive integer z.
QUESTION: Does G have an open packing set of cardinality at least z?

Theorem 2.1. The k-TOTAL LIMITED PACKING problem is NP-complete even for bipartite graphs
and for chordal graphs.

Proof. The k-TOTAL LIMITED PACKING problem is a member of NP because checking that a set of
vertices is a k-total limited packing set of cardinality at least z′ can be done in polynomial time.

In what follows, we show how a polynomial time algorithm for the OPEN PACKING problem could
be used to solve the k-TOTAL LIMITED PACKING problem in polynomial time. Let G with V (G) =
{v1,⋯, vn} be a graph as an instance of the OPEN PACKING problem. We set G′ = G ⊙ (k − 1)K1,
that is, a graph obtained from G by joining k − 1 new vertices ui1 , ui2 ,⋯, uik−1 to vi for each 1 ≤ i ≤ n,
and set z′ = n(k − 1) + z. Suppose that B is a ρo(G)-set. It is readily seen by the construction that
B′ = B ∪ {u11 , u12 ,⋯, u1k−1 ,⋯, un1 , un2 ,⋯, unk−1} is a k-total limited packing set of the graph G′. So,
Lk,t(G′) ≥ ∣B′∣ = ρo(G) + n(k − 1).

Assume, conversely, that B′ is an Lk,t(G′)-set. If we have uij ∉ B′ for some 1 ≤ i ≤ n and 1 ≤ j ≤ k − 1,
and ∣NG(vi) ∩ B′∣ ≤ k − 1, then B′ ∪ {uij} is a k-total limited packing set in G′, which contradicts the
maximality of B′. Thus, if uij ∉ B′, then ∣NG(vi) ∩B′∣ = k. Let vl ∈ NG(vi) ∩B′. Then, it can be easily
checked that B′′ = (B′/{vl})∪{uij} is an Lk,t(G′)-set containing uij . Therefore, without loss of generality,
we can assume that {u11 , u12 ,⋯, u1k−1 ,⋯, un1 , un2 ,⋯, unk−1} ⊆ B′. With this in mind, it is now obvious that
B′′ = B′∖{u11 , u12 ,⋯, u1k−1 ,⋯, un1 , un2 ,⋯, unk−1} is an open packing in G. So, ∣B′′∣ = ∣B′∣−n(k−1) ≤ ρo(G)
and we have that Lk,t(G′) ≤ ρo(G) + n(k − 1).

We now get from Lk,t(G′) = ρo(G) + n(k − 1) that Lk,t(G′) ≥ z′ if and only if ρo(G) ≥ z. It is known
from [4] that the OPEN PACKING problem is NP-complete even for bipartite graphs and for chordal
graphs. By the construction, if G is a bipartite (resp. chordal) graph, then G⊙(k−1)K1 is also a bipartite
(resp. chordal) graph. Consequently, the k-TOTAL LIMITED PACKING problem is NP-complete even
for bipartite graphs and for chordal graphs.

From the result above, we conclude that the problem of computing the k-total limited packing number
is NP-hard, even for some special families of graphs. Consequently, it is desirable to bound this parameter
in terms of several graph variables. Several bounds on the k-total limited packing number were given in
[5]. We here prove the following theorem.

Theorem 2.2. Let G = (V (G),E(G)) be a graph, then for every edge l of E(G)

Lk,t(G) ≤ Lk,t(G − l) ≤ Lk,t(G) + 2.

Moreover, these bounds are tight.
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Proof. Any k-total limited packing set of G is also a k-total limited packing set of G− l. Thus, Lk,t(G) ≤
Lk,t(G − l). If C is a cycle on n vertices, then L2,t(C) = L2,t(C − l) for every edge l ∈ E(C).

Let now that B be an Lk,t(G − l)-set, and l = xy. If x, y ∈ B, then B − {x, y} is a k-total limited
packing set of G. Hence, Lk,t(G) ≥ ∣B∣ − 2. If x ∈ B and y ∉ B, then B − {x} is a k-total limited packing
set of G, and Lk,t(G) ≥ ∣B∣ − 1. If x, y ∉ B, then B is a k-total limited packing set of G, so Lk,t(G) ≥ ∣B∣.
Therefore, Lk,t(G − l) ≤ Lk,t(G) + 2.

Assume G is a double star ST (x, y). Then, Lk,t(G − l) = Lk,t(G) + 2 for l = xy.
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Abstract

The energy of graph G, denoted by ϵ(G), is the sum of the absolute values of its eigenvalues. In
this paper, we present some lower bounds for ϵ(G) in terms of minimum degree.

1 Introduction

Let G be an undirected graph without multiple edges and loops. The adjacency matrix A(G) of a graph
G of order n takes the form of an n×n matrix, denoted as [aij] where the entries aij are defined such that
aij equals to 1 if the corresponding vertices vi and vj are adjacent, and 0 otherwise. The eigenvalues of
G is the eigenvalues of its adjacency matrix A(G). The energy ϵ(G) of G is defined to be the sum of the
absolute values of all eigenvalues of A(G). In this paper, we extend some results related to quadrangle-
free and mutually disjoint-quadrangles graphs to unveil new insights into the energy of graphs. The
pioneering work by Gutman [1] established a lower bound for the energy of triangle- and quadrangle-free
regular graphs, providing a foundation for our exploration. This brings us to Theorem 1, that explains the
energy of quadrangle-free graphs, considering certain limits on the graph’s maximum degree. Expanding
on Theorem 1, we further explore graphs with mutually disjoint quadrangles. Theorem 2 brings in a
new viewpoint, showing how disjoint quadrangles influence the minimum energy level of a graph. The
conditions under which these lower bounds are achieved offer a deeper understanding of graph structures
that optimize energy values.

2 Main results

In this section, we state some of new results on the lower bound of energy of graphs.
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By [4], we know that if G is a triangle- and quadrangle-free regular graph on n vertices, of degree r, r > 0,
then

ϵ(G) ≥ nr√
2r − 1

.

We extend this result as follows:

Theorem 2.1. Let G be a quadrangle-free graph of order n with minimum degree δ ≥ 1 and maximum
degree ∆. If ∆ ≤ 2δ − 1, then

ϵ(G) ≥ nδ√
2δ − 1

.

Moreover, the equality holds if and only if G is the disjoint union of complete graphs K2.

Theorem 2.2. Let G be a graph of order n with minimum degree δ ≥ 1 and maximum degree ∆ in which
all quadrangles are mutually disjoint. If ∆ ≤ 2δ − 1 + 3

δ
, then

ϵ(G) ≥ nδ
√
δ√

2δ2 − δ + 2
.

Moreover, the equality holds if and only if G is the disjoint union of complete bipartite graphs K2,2.
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Abstract

The domination polynomial of a graph G of order n is the polynomial D(G,x) = ∑n
i=0 d(G, i)xi,

where d(G, i) is the number of dominating sets of G of size i. The neighbourhood corona of two graphs
G1 and G2 is denoted by G1 ⊛G2 and is the graph obtained by taking one copy of G1 and ∣V (G1)∣
copies of G2, and joining the neighbours of the i-th vertex of G1 to every vertex in the i-th copy of
G2. In this talk, we study the domination polynomial of neighborhood corona of some of graphs.

1 Introduction

Let G be a simple graph. For any vertex v ∈ V (G), the open neighborhood of v is the set N(v) = {u ∈
V (G)∣u ∼ v} and the closed neighborhood is the set N[v] = N(v) ∪ {v}. For a set S ⊂ V , the open
neighborhood of S is N(S) = ⋃v∈SN(v) and the closed neighborhood of S is N[S] = N(S) ∪ S. A set
S ⊂ V is a dominating set if N[S] = V , or equivalently, every vertex in V ∖ S is adjacent to at least one
vertex in S. The domination number γ(G) is the minimum cardinality of the dominating set in G. The
total dominating set is a subset D of V that every vertex of V is adjacent to some vertices of D. The total
domination number of G is equal to minimum cardinality of total dominating set in G and denoted by
γt(G). An i-subset of V (G) is a subset of V (G) of cardinality i. Let D(G, i) be the family of dominating
sets of G which are i-subsets and let d(G, i) = ∣D(G, i)∣. The polynomial D(G,x) = ∑n

i=0 d(G, i)xi is
defined as domination polynomial of G [1].

The domination numbers of graph products have been extensively studied in the literature. In partic-
ular, a large number of papers have addressed the domination number of Cartesian products, inspired by
the conjecture by V. G. Vizing that γ(G ◻H) > γ(G) × γ(H) (see [4] for a survey.)

The domination polynomials of binary graph operations, such as, join and corona has been computed
[2]. Also, recurrence formulae and properties of the domination polynomials of families of graphs obtained
by various products, has been investigated [3]. A clique cover or partition into cliques of a given graph
is a partition of the vertices into cliques, subsets of vertices within which every two vertices are adjacent.
Given two graphs G and H, assume that C = {C1,C2,⋯,Ck} is a clique cover of G and U is a subset of
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V (H). Construct a new graph from G, as follows: for each clique Ci ∈ C, add a copy of the graph H
and join every vertex of Ci to every vertex of U . Let GC ⋆HU denote the new graph. The domination
polynomial of the clique cover product GC ⋆HV (H) or simply GC ⋆H studied in [5]. The following theorem
gives the domination polynomial of GC ⋆HU .

Theorem 1.1. [5] For two graphs G and H, let C = {C1,C2,⋯,Ck} be a clique cover of G and U ⊆ V (H).
Then

D(GC ⋆HU , x) =
k

∏
i=1
D(H∗, x),

where H∗ is the subgraph of order ∣V (H)∣+ ∣Ci∣ in GC ⋆HU obtained by adding a copy of the graph H and
joining every vertex of Ci to every vertex of U . Moreover,

D(GC ⋆H,x) =
k

∏
i=1
[((1 + x)ni − 1)(1 + x)∣V (H)∣ +D(H,x)],

where ni is the order of Ci.

If each clique Ci of the clique cover C is a vertex, then GV (G) ⋆H is the corona of G and H. So the
clique cover product of graphs is a generalization of corona product and hence by Theorem 1.1 we have
the following result:

Theorem 1.2. [2] Let G and H be nonempty graphs of order n and m, respectively. Then

D(G ○H,x) = (x(1 + x)m +D(H,x))n

The neighbourhood corona of two graphs G1 and G2 is denoted by G1⊛G2 and is the graph obtained
by taking one copy of G1 and ∣V (G1)∣ copies of G2, and joining the neighbours of the i-th vertex of
G1 to every vertex in the i-th copy of G2. In this paper we investigate the domination polynomial of
neighborhood corona of two certain graphs.

2 Main results

In this section, we state some new results on the domination number of neighborhood corona and domi-
nation polynomial of neighborhood corona Kn ⊛K1.

Theorem 2.1. If G is a connected graph of order n ⩾ 3, then γ(G⊛H) = γt(G).

Theorem 2.2. (i) For n ⩾ 3, γ(Kn ⊛K1) = 2.

(ii)

d(Kn ⊛K1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i

∑
k=2
(n
k
)( n

i − k
) + n(n − 1

i − 2
); if i = 2, ..., n,

∑
k+k′=i

(n
k
)(n
k′
); if i = n + 1, ...,2n.
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Abstract

Topological indices are numerical descriptors for study the relationship between the properties and
structures of molecules. In this paper, we introduce a novel vertex-degree-based topological index that
is called redefined Sombor index and it has a linear correlation with Sombor index.

1 Introduction

In this paper, we consider a simple, connected, undirected graph G(V,E) with a vertex set V (G) and an
edge set E(G). For any vertex x ∈ V (G), Nx(G) represents the set containing all neighbors of x. The
degree of x equals the number of its neighbors and is denoted by dx(G) = ∣Nx(G)∣. An edge connecting a
vertex of degree x to a vertex of degree y is denoted by (x, y)-edge.

Topological indices are numerical descriptors that remain unchanged despite graph isomorphisms.
Gutman introduced the Sombor index, a vertex-degree-based topological index, in [1], defined as follows:

SO(G) = ∑
zw∈E(G)

√
d2z + d2w.

He explored various properties of this index on specific graphs and established both lower and upper
bounds for Sombor indices in [2]. Redžepović [6] investigated the chemical applicability of Sombor indices
and delved into their predictive and discriminative potentials.

In [3] Gutman et al. introduced the product of Sombor index and the modified Sombor index and
computed its main properties. Lower and upper bounds for its product are obtained and the extremal
graphs are determined. Kulli in [4] introduced the modified neighborhood Sombor index and the modified
neighborhood Sombor exponential of a graph and he also computed the its valu and their corresponding
exponentials of some dendrimers and Some properties of its obtained.

Liu in [5] introduced multiplicative Sombor index and some graph transformations which decrease or
increase the multiplicative Sombor index. By using these transformations, he determined extremal values
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Figure 1: The correlation between the SO and ReSO1 for 18 isomers of Octane.(The correlation coefficient
is 0.9419)

of the multiplicative Sombor index of trees and unicyclic graphs. In this paper we introduce a novel
vertex-degree-based topological index of graphs that it defined as

ReSO1(G) = ∑
uv∈E(G)

dudv
√
d2u + d2v, (1)

and called redefined Sombor index. According to figure 1 the redefined Somber index ReSO1(G) and
Sombor index SO(G) have a linear correlation.

2 Main results

In this section we present some basic properties of the redefined Sombor index. From definition of
ReSO1(G) in Eq.1 we straightforwardly obtain:

Theorem 2.1. 1. Let G be a r−regular graph with n vertices, then ReSO1(G) = nr4

2

√
2.

2. For the cycle graph Cn, we have ReSO1(Cn) = 8n
√
2.

3. If G be the complete graph Kn, then ReSO1(Kn) = n(n−1)4
2

√
2.

4. If Qk be the hypercube graph with 2k vertices, then ReSO1(Qk) = 2kk4

2

√
2.

Theorem 2.2. 1. Let K(p,q) be the complete bipartite graph, then ReSO1(Kp,q) = p2q2
√
p2 + q2.

2. For complete bipartite graph Kp,p, we have, ReSO1(Kp,p) = p5
√
2.

3. If Sn be star of order n, then ReSO1(Sn) = n2
√
1 + n2.

Theorem 2.3. Let Pn be the path with n vertices, then ReSO1(Pn) = 4(
√
5 + (n − 3)

√
8).

Theorem 2.4. If Kn be the complete graph of order n, and Kn be its complement, then for any graph G
of order n, we have,

ReSO1(Kn) ≤ ReSO1(G) ≤ ReSO1(Kn).

Equality holds if and only if G ≅Kn or G ≅Kn.

Theorem 2.5. If M1(G) be first zagreb index and SO(G) be Sombor index of graph G,then

ReSO1(G) ≤
M2

1

4
SO(G).
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3 Redefined Sombor index of benzenoid systems

The graph of triangular benzenoid Tp has 6 edges with (2,2), 6p − 6 edges with (2,3) and 3p(p−1)
2

with
(3,3) degree (p is the number of hexagons in the base graph). Therefore

ReSO1(Tp) = 48 + 6(6p − 6)
√
13 + 27p(p − 1)

2

√
18.

The benzenoid rhombus Rp is formed from two copies of a triangular benzenoid Tp by identifying hexagons
in one of their base rows. The graph of Rp has 6 edges with (2,2), 8p−8 edges, with (2,3) and 3p2−4p+1
with (3,3) degree. Hence

ReSO1(Rp) = 48 + 6(8p − 8)
√
13 + 9(3p2 − 4p + 1)

√
18.

The benzenoid hourglass Xp is derived from two copies of a triangular benzenoid Tp by overlapping
hexagons. The graph of Xp has 8 edges with (2,2) and 12p − 16 edges, with (2,3) and 3p2 − 3p + 4 with
(3,3) degree. Thus,

ReSO1(Xp) = 64 + 6(12p − 16)
√
13 + 9(3p2 − 3p + 4)

√
18.

In this study, we have introduced the novel vertex-degree-based topological index of graphs that is
called redefined Sombor index and determined its value for some certain graphs and some benzenoid
systems. Since there exists not much information about this index, it is interesting to test their potential
chemical applicability and could be determined the bounds and the exact values of this sombor index
from other (chemical) graphs.
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Abstract

The unicyclic graphs are great class of chemical structures, in this paper we obtain bound of Sombor
index of unicyclic graphs with given domination number.

1 Introduction

Let G(V,E) represent a simple connected and undirected graph having a set of vertices V (G) and a set
of edges E(G). For any vertex w ∈ V (G), Nw(G) denotes the set comprising all neighbors of vertex w.
The degree of w equals the number of its neighbors, defined as dw(G) = ∣Nw(G)∣. A vertex with a degree
of one is termed a pendent vertex. The graph’s diameter refers to the greatest distance between any two
vertices within G. A diametral path is a path that contains D(G) edges between two vertices.

A unicyclic graph is a connected graph G, containing exactly one cycle, where ∣V (G)∣ = ∣E(G)∣. The
set D ⊆ V (G) is termed a domination set of G, if for every w ∈ V (G), either w ∈ D or there exists
z ∈ Nw(G) such that z ∈ D. The smallest cardinality of D is referred to as the domination number of G,
denoted by γ(G).

Topological indices are numerical descriptors invariant under graph isomorphisms. Gutman introduced
the Sombor index in [3] as a vertex-degree-based topological index, defined by:

SO(G) = ∑
ab∈E(G)

√
d2a + d2b .

He explored several properties of this index concerning specific graphs. Redžepović [5] explored the chem-
ical applicability of Sombor indices, studying their predictive and discriminative potentials, concluding
their good predictive potential.

Recently, the Sombor index has been paid attention in mathematics and chemistry studies, especially
on trees, unicyclic, and bicyclic graphs. For example, Alidadi et al. [1] obtained the minimum Sombor
index for unicyclic graphs with fixed diameter. Cruz and Rada [2] determined the maximum and minimum
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Sombor index for unicyclic and bicyclic graphs, while Zhou et al. [8] achieved the extremal Sombor index
of trees and unicyclic graphs with given matching number.

Réti et al. [6] established certain bounds on the Sombor index. They demonstrated that among all
connected unicyclic graphs of order n ≥ 4, the cycle graphs Cn possess the minimum Sombor index. They
also indicated that the maximal Sombor index is instrumental in determining the classes of all connected
graphs with a specific cycle.Sun and Du [7] determined the upper and lower bounds of the Sombor index
on trees with a given domination number.

Another famous index based on vertex degrees is the Zagreb index, which has attracted the attention
of many researchers, and numerous bounds have been obtained for it using graph parameters, including
the domination number. This index is defined as follows:

Zg1 = ∑
ab∈E(G)

(da + db).

Mojdeh et al. [4] deduced upper bounds of Zagreb indices from unicyclic and bicyclic graphs with
domination number, also establishing bounds for the first and second Zagreb indices for trees, unicyclic,
and bicyclic graphs with a given total domination number.

In this paper, we present the upper bound of Sombor index of unicyclic graphs with given domination
number. In Lemma 1.1, this bound is presented for trees with n vertices and domination number γ.

Lemma 1.1. [7] If T is a tree with a domination number of γ, then

SO(T ) ≤ (n − 2γ + 1)
√
(n − γ)2 + 1 + (γ − 1)

√
(n − γ)2 + 4 +

√
5(γ − 1).

The following lemma states that if we remove an edge from a graph, the domination number either
remains constant or increases by one unit. We use this lemma to prove Theorem 2.2.

Lemma 1.2. [4] If G is a connected graph with a domination number γ(G), then for the edge e belongs
to E(G), γ(G − e) ∈ {γ(G), γ(G) + 1}.

2 Main results

In this section, we will present the upper bound of Sombor index of unicyclic graphs with n vertices and
domination number γ. We use Lemma 2.1 to prove Theorem 2.2.

Lemma 2.1. Let G be a connected graph with n ≥ 3 vertices and a domination number γ. If we define:

k(n, γ) = (n − 2γ + 1)
√
(n − γ)2 + 1 + (γ − 1)

√
(n − γ)2 + 4 +

√
5(γ − 1), (1)

then k(n, γ) is a strictly decreasing function with respect to γ.

The following theorem is the main result of this paper, which states an upper bound for unicycle
graphs using the domination number. In this case, we remove an edge from the single cycle in the graph
and convert it into a tree, and then we get the result using Lemma 1.1.

Theorem 2.2. If U is a unicyclic graph of order n with domination number γ(U) = γ, and maximum
degree ∆. Then,

SO(U) ≤ (n − 2γ + 1)
√
(n − γ)2 + 1 + (γ − 1)

√
(n − γ)2 + 4

+
√
5(γ − 1) +

√
2∆ + 2

√
2(∆ − 1)2.

Proof. If U is a unicyclic graph of order n and with domination number γ. If C1 is the unique cycle of
G, and e = ab ∈ E(C1) is an edge. Taking the tree T ′ = U − e alongside Lemma 1.1 suggests that
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SO(U) = SO(T ′) +
√
d2a + d2b + ∑

c∈Na,c≠b
(
√
d2a + d2c −

√
(da − 1)2 + d2c)

+ ∑
u∈Nb,u≠a

(
√
d2b + d2u −

√
(db − 1)2 + d2u)

By Lemma 1.2, we have γ(T ′) ∈ {γ, γ+1} and by Lemma 2.1, k(n, γ) is strictly decreasing for γ, therefore
the result is obtained.
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Abstract

Let G be a simple connected graph. For a vertex u, transmission TrG(u) is defined as sum of all
distances between u and other vertices. Wiener index of G is sum of distances between all pair of
vertices which equals half of sum of transmission of vertices. Wiener complexity is number of different
vertex transmission of G. In this paper we study the Wiener index on graphs with maximum and
minimum possible value of Wiener complexity.

1 Introduction

All considered graphs are simple and connected. Let G(V (G),E(G)) be a graph. Distance between
two vertices u and v in G, dG(u, v) (shortly d(u, v)) is the length of shortest path between u and v.
Maximum distance from a vertex v is called eccentricity of v and is denoted by εG(v). Center of G, C(G)
is set of vertices have minimum eccentricity. Diameter (G) and radius (G) are maximum and minimum
eccentricity of vertices of G respectively. Transmission of a vertex v, TrG(v) is sum of all distances
between v and other vertices of G.

The concept of distance pervades many fields of science as mathematics, and even our daily lives.
Distances play a crucial role in location theory and facility location problems, network design in operations
research [2, 4], distance-based topological indices in mathematical chemistry, measuring the closeness of
groups of individuals in sociology, identifying the role of players in social networks such as the internet,
and so on. Transmission also introduces several concepts in graph theory. For example, the well-known
topological index, the Wiener index, is defined as half the sum of the vertex transmissions, i.e.

W (G) = 1

2
∑

v∈V (G)
Tr(v).

The number of distinct vertex transmission in G is called Wiener complexity of G and is denoted by
CW (G). Interesting graph families have been defined based on the transmission recently. For instance,
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if all vertices of the graph G have a same transmission, G is called transmission regular. A transmission
irregular graph is a graph which its vertices have distinct transmission. In the other word, a graph G
whose Wiener complexity is minimum i.e. CW (G) = 1 is called a transmission regular graph and if G
have maximum Wiener complexity i.e. CW (G) = n(G) introduced as transmission irregular graph. In
this paper we study extremal transmission regular and transmission irregular graphs with respect to the
Wiener index. The following useful lemma goes back to[3]

Lemma 1.1. Let u and v be two adjacent vertices of G. Then Tr(u) − Tr(v) = nv − nu, where nu (nv)
is the number of vertices lie closer to u (v) than v (u).

Theorem 1.2. Let G be a graph of diameter at most 2. Then G is transmission regular graph if and only
if G is regular graph.

Let n(G) denotes the order of G and u be a vertex of G. By a direct calculation we get

Tr(u) = 2(n(G) − 1) − deg(u)

Hence two vertices have a same transmission if and only if are of a same degree.
Note that in graphs of diameter at most 2, the number of distinct degree of vertices equals Wiener

complexity.

Corollary 1.3. If G is a connected strongly regular graph then G is transmission regular.

Theorem 1.4. Let G be transmission regular graph. Then G is 2−connected.

Proof. Suppose on the contrary that u is a cut-vertex of G. Let G1 be a connected component of G − u
with minimum order among all connected components of G−u. It is evident n(G1) < n(G)

2
. Let y ∈ V (G1).

By Lemma 1.1
Tr(y) − Tr(u) > (n(G) − n(G1)) − n(G1) > 0

Thus Tr(y) > Tr(u) that is a contradiction.

Since cycles are transmission regular graph and not 3− connected, the above statement could not be
extended to 3−connectivity. Next result shows that cycles get maximum Wiener index among all graphs
of the same order.

Theorem 1.5. If G is a transmission regular graph of order n. Then (n
2
) ≤W (G) ≤W (Cn) and the left

equality holds if and only if G =Kn and the right equality holds if and only if G = Cn

Proof. The left inequality follows from the fact that complete graph Kn is transmission regular graph and
its Wiener index is minimum among all graphs of order n especially among transmission regular graphs.
Let n(G) = n and u be a vertex of G. By Lemma 1.1 G is two connected and then each pair of vertices
lie in a common cycle. This yields that ε(u) ≤ n

2
. More over for each positive integer t ≤ ε(u) − 1 there is

at least two vertices at distance t from u. Consider two cases: First n is odd number. Then we get

Tr(u) ≤ 2(1 + 2⋯n − 1
2
) = 1

4
(n2 − 1).

Consequently

W (G) = 1

2
∑

u∈V (G)
Tr(u) ≤ 1

2
n
1

4
(n2 − 1) = n

3 − n
8

Second: n is even number. Similarly we have

Tr(u) ≤ 2(1 + 2⋯n
2
− 1) + n

2
= 1

4
(n2).

Consequently

W (G) = 1

2
∑

u∈V (G)
Tr(u) ≤ 1

2
n
1

4
(n2) = n

3

8

In both cases, the equality holds if and only if all vertices are of eccentricity n
2
. This yields G is a cycle.

Proof is completed.
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Since the distance between vertices is preserved under graph automorphism, set of asymmetric graphs
contains irregular graphs. In the sequel, extremal transmission irregular trees with respect to the Wiener
index are determined. The tree T (m,n, k) represents a tree consisting of 3 paths of orders m, n, and k,
with an isolated vertex u connected to an end vertex of each of the 3 paths.

Theorem 1.6. If T is an transmission irregular tree of order n = n(T ), then

W (T ) ≤ 1

6
(n3 − 13n + 48) .

Moreover, equality holds if and only if T = T1,2,n−4.

Proof. Let T be a tree that has the maximum Wiener index among all asymmetric trees of order n. Let
P be a diametrical path in T . As T is asymmetric, P ≠ T . Let v be a leaf of T that does not lie on P .
From the well known fact that the path Pn has the maximum Wiener index among all graphs of order n
(and hence among all trees of the same order), we get

W (T ) =W (T − v) + Tr(v) ≤W (Pn−1) + Tr(v). (1)

Since T is asymmetric and v does not lie on the diametrical path P , we have ecc(v) ≤ n − 3. (Indeed,
ecc(v) = n − 2 would mean that T = T1,1,n−3 which has a non-trivial automorphism.) This in turn implies
that Tr(v) is largest possible if v is adjacent to the third vertex of P (or the third before last vertex of
P for that matter). As T has the maximum possible Wiener index, we must have equality in (1), which
implies that T − v = Pn−1 and v is adjacent to the third (or the before last third vertex) of Pn−1, that is,
T = T1,1,n−4. Finally,

W (T1,1,n−4) =W (Pn−1) + Tr(v) = (
n

3
) + ((n − 2

2
) + 5) = n

3 − 13n + 48
6

.
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Abstract

In this paper, we generalized cartesian product of two graphs, hemi-cartesian product, by an ar-
bitrary induced subgraph in which it is not comutative, necessarily. Also, we introduced symmetric
product of a graph by itself. Furthermore, the zero divisor graph of 2 × 2 matrices over a field F are
obtained by applying hemi-cartesian, cartesian, tensor and symmetric product and join, A−join and
union of some graphs.

1 Introduction

Sabidussi [3, p. 396], has defined the A−join of a set of graphs {Ga}a∈A as the graph H with vertex and
edge sets

V (H) = {(x, y) ∣ x ∈ V (A) & y ∈ V (Gx)},
E(H) = {(x, y)(x′, y′) ∣ xx′ ∈ E(A) or else x = x′ & yy′ ∈ E(Gx)}.

It is clear that when A =K2, the A−join of graphs Γ1 and Γ2 is the ordinary join of two graphs.
All zero divisor elements of R is denoted by Z(R). The zero divisor graph of a ring was introduced by

Beck in 1988. Following Beck [2], we assume that R is a ring and G(R) is a simple graph with vertex set
V (G(R)) = R and edge set E(G(R)) = {xy ∣ x, y ∈ R & xy = 0}. Anderson and Livingston [1], considered
the set of all non-zero zero divisors as the vertex set to simplify the Beck’s zero divisor graph. The edges
are the same as the Beck’s seminal paper. In this paper we use the Anderson−Livingston’s definition
of zero devisor graph and so all rings considered here is not integral. This graph is denoted by Γ(R).
Moreover, we consider graphs without multiple edges. For a subset A of R, A⋆ denotes the set of nonzero
elements of A. UM2(F ) is denotes the set of all upper triangular matrices over a field F .

If G is a graph, A ⊆ V (G) and B ⊆ E(G) then G ∖ (A,B) is a graph with vertex set V (G) ∖A and
edge set E(G)∖B. The one vertex graph with a loop is denoted by Kl

1. Suppose T ⊆ V (G). The induced
subgraph G[T ] is a subgraph with V (G[T ]) = T and E(G[T ]) = {e = uv ∈ E(G) ∣ {u, v} ⊆ T}.
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2 Main results

In this section, we firstly introduce hemi-cartesian and symmetric product, then state some results on
zero divisor graph of 2 × 2 matrices over a field F and show that how one can apply the products to
characterized the zero divisor graph.

The hemi-Cartesian product G
G′

⊟ H of G and H related to the induced subgraph G′ of G is a graph
with the vertex and edge sets

V (G
G′

⊟ H) = V ((G ∖G′) ◻H) ∪ V (G′),

E(G
G′

⊟ H) = {t(x, y) ∣ t ∈ V (G′), (x, y) ∈ V ((G ∖G′) ◻H), tx ∈ E(G)} ∪ E(G′)
∪ E((G ∖G′) ◻H),

respectively.
The symmetric product of a graph G by G, G⋆G, is a graph with vertex set V (G⋆G) = V (G)×V (G)

and edge set E(G ⋆G) = {(a, b)(c, d) ∣ ad ∈ E(G) or bc ∈ E(G)}.
For a ring R, the looped zero divisor graph Γl(R) and looped Beck’s zero divisor graph ΓB,l(R) are

defined as follows:

V (Γl(R)) = Z(R)⋆ , V (ΓB,l(R)) = R,
E(Γl(R)) = {xy ∣ x, y ∈ Z(R)⋆ & (xy = 0 or yx = 0)},

E(ΓB,l(R)) = {xy ∣ x, y ∈ R & (xy = 0 or yx = 0)}.

Theorem 2.1. [4] Suppose R1,⋯,Rn are rings. Then,

ΓB,l(R1 ×⋯ ×Rn) = ΓB,l(R1)⊗⋯⊗ ΓB,l(Rn)
Γ(R1 ×⋯ ×Rn) = (ΓB,l(R1)⊗⋯⊗ ΓB,l(Rn)) ∖ ({0} ∪ ν, λ),

where λ and ν are the set of loops and pendant vertices of ΓB,l(R1 ×⋯ ×Rn), respectively.

Now, consider the wheel graph W4 with the vertex set V (W4) = {a, b, c, d, e} such that deg(a) = 4 and
{bc, cd, de, eb} ⊆ E(W4). Define X ′′′(F ) to be the W4−join of K1, ΦF ⋆ , ΦF ⋆ , K1 and K1. We label the
vertices of the subgraph ΦF ⋆ corresponding to b by bα and the vertices of the subgraph ΦF ⋆ corresponding
to c by cα, where α ∈ F ⋆. The vertices a, d and e of W4 are labeled by the same letters in X ′′′(F ).

We now define the graph ∆′′′(F ) as a X ′′′(F )−join of some graphs isomorphic to KF ⋆ or ΦF ⋆ in such
a way that for each α ∈ F ⋆, the vertices a, bα, cα, d and e are corresponding to graphs KF ⋆ , ΦF ⋆ , ΦF ⋆ ,
ΦF ⋆ and ΦF ⋆ , respectively. We label the vertices of the subgraph KF ⋆ corresponding to a by aα, for every
α ∈ F ⋆. The vertices of the subgraph ΦF ⋆ corresponding to bα, α ∈ F ⋆, by bα,β , where β ∈ F ⋆, and the
vertices of the subgraph ΦF ⋆ corresponding to cα, α ∈ F ⋆, by cα,β , where β ∈ F ⋆, are labeled. In a similar
way, the vertices of the subgraph ΦF ⋆ corresponding to d and e are labeled by dα and eα, respectively.
Define ∆′′′,l(F ) to be a graph with vertex set V (∆′′′(F )) and edge set E(∆′′′(F )) together with one loop
on each vertex aα, α ∈ F ⋆. We label the complete graph K2 by {1,2} and define the induced subgraph
X ′′′(F )2 =X ′′′(F )[{e, d}].

Set X ′′(F ) = (X ′′′(F )
X′′′(F )2
⊟ K2) ∖ (∅,{(a,1)(a,2)}). Then,

V (X ′′(F )) = {e, d, (a, i), (bα, i), (cα, i) ∣ i ∈ {1,2}, α ∈ F ⋆}.

With the following mention, subgraph of the zero divisor graph of 2 × 2 matrices over fields are made by
symmetric product. Suppose ∆′′(F ) is a X ′′(F )−join of some graphs isomorphic to KF ⋆ or ΦF ⋆ in such
a way that for each i, α, i ∈ {1,2} and α ∈ F ⋆, the vertices (a, i), (bα, i), (cα, i), d and e are corresponding
to graphs KF ⋆ , ΦF ⋆ , ΦF ⋆ , ΦF ⋆ and ΦF ⋆ , respectively. We define a graph X(F ) and a matching G−1(F )
for the complete graph on the vertex set F ⋆ by E(G−1(F )) = {xy ∣ xy + 1 = 0}.

Let X ′(F ) = G−1(F ) ∗G−1(F ). The graph ∆′(F ) is defined as X ′(F )−join in such a way that the
vertex (α,β) of X ′(F ) corresponds to the complete graph KF ⋆ , if αβ + 1 = 0, and the vertex (α,β)
corresponds to ΦF ⋆ , otherwise. By applying X ′(F ) and X ′′(F ), Γ(M2(F )) are characterized in [5].
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Lemma 2.2. The graphs ∆′(F ), ∆′′(F ) and ∆′′′(F ) are isomorphic to induced subgraphs of Γ(M2(F ))

and ∆′′′(F ) ≅ Γ(UM2(F )) and ∆′′′,l(F ) ≅ Γl(UM2(F )). So, (X ′′′(F )
X′′′(F )2
⊟ K2) ∖ (∅,{(a,1)(a,2)})

and G−1(F ) ∗G−1(F ) are isomorphic to induced subgraphs of Γ(M2(F )).

Theorem 2.3. [5] Suppose R is a finite commutative reduced ring with unity and
H =⊗m

i=1(Φ(qi−1)2qi +Kl
1 +∆′′′,l(Fi)), For some prime powers qi. Then, Γ(UM2(R)) ≅ (⊗m

i=1(Φ(qi−1)2qi +
Kl

1 +∆′′′,l(Fi)))∖ ({0}∪ ν, λ), where ν and λ are the set of all pendant vertices and loops of the graph H,
respectively.
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Abstract

In this paper, we review recent results on the existence of perfect state transfer (PST for short) on
Cayley graphs.

1 Introduction

Let Γ be a simple undirected graph with adjacency matrix A. The continuous-time quantum walk on Γ
is defined through the time-dependent unitary matrix

H(t) =HA(t) = exp(−itA) =
∞
∑
k=0

(−i)ktkAk

k!
, 0 < t ∈ R, i =

√
−1,

which is known as transfer matrix of Γ. This concept first introduced by Farhi and Gutman by a motivation
of the Schrödinger equation. They used it as a paradigm to design efficient quantum algorithms.

The significance of the study of quantum state transfer lies in its applications to the theory of Quantum
Information and Computation. In fact, one of the cruical ingredients in most of quantum information
processing protocols is the transfer of a quantum state from one location to another location. Quantum
spin network is an example of physical systems that can serve as a quantum channel. By considering the
networks as graphs, in algebraic graph theory, one of the main questions is to find a characterization of
graphs having perfect state transfer. We say that a graph Γ has a perfect state transfer (PST for short)
from the vertex u to the vertex v at time t if the (u, v)-entry of H(t), denoted by Hu,v(t), has absolute
value 1. If ∣Hu,u(t)∣ = 1 then we say that Γ is periodic at u with period t. Γ is called periodic if it is
periodic at all vertices with period t.

Let G be a group and S be a non-empty subset of G. The Cayley graph of G with respect to S,
Cay(G,S), is a graph with vertex set G where g is adjacent to h if hg−1 ∈ S. The graph Cay(G,S) is
called quasiabelian if S is a conjugate-closed subset of G. A graph is called integral if all of the eigenvalues
of its adjacency matrix are integers. In this paper, we review recent results on PST problem on Cayley
graphs including the papers of the author.

∗Speaker
subjclass[2010]: 05C25, 81P45,15A18
keywords: Perfect state transfer, eigenvalue, Cayley graph

54



M. Arezoomand

2 Main results

In this section, we state some of recent results on the PST problem on Cayley graphs.

Proposition 2.1. [1, Corollary 7 and Lemma 11] Let Γ = Cay(G,S) be an undirected Cayley graph over
a finite group G with irreducible unitary matrix representations ϱ(1), . . . , ϱ(m) . Let dl be the degree of
ϱ(l). For each l ∈ {1, . . . ,m}, define a dl × dl block matrix Al ∶= ϱ(l)(S). Let χAl

(λ) and χA(λ) be the
characteristic polynomials of Al and A , respectively. Then

(1) there exists a basis B such that [A]B = Diag(A1 ⊗ Id1 , . . . ,Am ⊗ Idm).
(2) χA(λ) = Πm

l=1χAl
(λ)dl .

(3) Let v(k) be an eigenvector of Ak, 1 ≤ k ≤m, associated with λ. Then the following vectors are distinct
linearly independent dk eigenvectors of Γ associated with λ:

vj(k) ∶= ∑
g∈G
[v(k) ⋅ ϱ

(k)
j (g)] eg, 1 ≤ j ≤ dk

where ⋅ is the usual inner product and ϱ
(k)
j (g) is a vector whose coordinates are the coordinates of

jth column of ϱ(k)(g).
Corollary 2.2. Let A be an abelian group, Irr(A) = {1 = χ1, . . . , χn}, G =Dih(A,x) or G =Dic(A,y, x),
and Γ = Cay(G,T ), where T = T1 ∪ xT2 for some T1, T2 ⊆ A. if 1 ≠ g−11 g2 ∈ A then Γ has a PST between
g1 and g2 if and only if the following conditions hold:

(i) the order of g−11 g2 is two,

(ii) Γ is integral, and for each i, χi(T1) and ∣χi(T2)∣ are integers,

(iii) ν2(∣T ∣ − λ+i ) = ν2(∣T ∣ − λ−i ) is the same integer, say k, for all i that χi(g−11 g2) = −1 and for all i with
χi(g−11 g2) = 1, ν2(∣T ∣ − λ+i ) > k and ν2(∣R∣ + ∣S∣ − λ−i ) > k,

where λ+i = χi(T1) + ∣χi(T2)∣ and λ−i = χi(T1) − ∣χi(T2)∣, i = 1, . . . , n.
Also, if g−11 g2 ∉ A, then Γ has a PST between g1 and g2 at time t if and only if the following conditions

hold:

(i) χj(T2) ≠ 0 for each j,

(ii) if g1 ∈ A and g2 ∉ A then χj(g−11 g2) = ∣χj(T2)∣
χj(T2) exp(−i(λ

+
1 − λ+j )t), and if g1 ∉ A and g2 ∈ A then

χj(g−11 g2) = ∣χj(T2)∣
χj(T2)

exp(−i(λ+1 − λ+j )t), where in the both cases exp(−i(λ+1 − λ+j )t) = ±1.

(ii) χj(T1), ∣χj(T2)∣ ∈ Z for each j, in particular Γ is integral,

(vi) v2(∣T2∣) = v2(∣χj(T )∣) for all j.

Also Γ is periodic if and only if Γ is integral. Furthermore, the minimum period of the vertices is 2π
M
,

where M = gcd{λ − λ+1 ∣ λ ∈ Spec(Γ) ∖ {λ+1}}.
Theorem 2.3. Let Cay(G,R) be a quasi-abelian Cayley graph over a group G of order n. Suppose that G
has m non-equivalent irreducible representations. For 1 ≤ k ≤m, let λk be an eigenvalue of Cay(G,R) with
multiplicity d2k satisfying ∑m

k=1 d
2
k = n. For g, h ∈ G, Cay(G,R) has PST between g and h at time t if and

only if the following hold, where M = gcd(∣R∣ − λk ∣ 1 ≤ k ≤m) and Ω− = {k ∣ χk(gh−1) = −dk,1 ≤ k ≤m}.
1) Cay(G,R) is an integral graph.

2) For every 1 ≤ k ≤m, χk(gh−1) = ±dk.
3) There exists an integer µ such that v2(∣R∣ − λk) = µ for k ∈ {1 ≤ j ≤ m ∣ χj(gh−1) = −dj} and

v2(∣R∣ − λk) ≥ µ + 1 for k ∈ {1 ≤ j ≤m ∣ χj(gh−1) = dj}.

4) t ∈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{2zπ
M
∣ z ∈ Z}, g = h or for each k ∈ Ω−, λk = ∣R∣;

{ (1+2z)π
M

∣ z ∈ Z}, otherwise.

Moreover, the order of gh−1 is two and Cay(G,R) is periodic if and only if it is an integral graph and the
period is t ∈ { 2zπ

M
∣ z ∈ Z ∖ {0}}.
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Abstract

In this paper, we define generalizd splitting and element splitting operations on p-matroids.The
p-matroids are the matroids representable over GF(p). The circuits and the bases of the new matroid
are characterized in terms of circuits and bases of the original matroid, respectively.

1 Introduction

Note that the maximum number of pages for the extended abstract is three pages.
A matroid M is an ordered pair (E,I) consisting of a finite set E and a collectionI of subsets of E

having the following three properties:
(I1)∅ ∈ I.
(I2)IfI ∈ I andI ′ ⊂ I, thenI ′ ∈ I.
(I3)IfI1, I2are inI and ∣I1∣ < ∣I2∣, then there is an element e of I2I1 such that I1 ∪e ∈ I.
We shall call (I2) and (I3) the hereditary and independence augmentation properties. If M is the matroid
(E,I), then M is called a matroid on E. The members of I are the independent sets of M, and E is the
ground set of M. We shall often write I(M) forI and E(M) for E, particularly when several matroids are
being considered.We call a maximal independent set in M a basis or a base of M. The collection of the
bases of M denoted by B(M).
A subset of E that is not in I is called dependent.
A minimal dependent set in an arbitrary matroid M will be called a circuit of M and we shall denote the
set of circuits of M by C or C(M)
Whenever E is the set of edges of graph G and C is the set of cycles of G, then C is the set of circuits of
a matroid is on E. The matroid derived from the graph G is called the cycle matroid or polygon matroid
of G. It is denoted by M(G).
Let A be a matrix with n rows and m columns on the field F and E, the set of labels of the columns of the
matrix A, and also Iis the set of all subsets of E that are linearly independent in the vector space V(m,F),
in this case (E,I) is a metroid. We call this metroid the vector metroid obtained from the matrix A and
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we denote it by M[A]. Let M be a p -matroid on a set E and let T E. Suppose A is a matrix representation
of M over the prime field GF(p). Let AT be the matrix obtained by adjoining an extra row with entries
zero everywhere except in the column corresponding to the members of T where it takes the value 1. The
vector matroid of matrix AT is denoted byMT . The transition from M toMT is called splitting operation
and the matroid MT is called the splitting matroid. LetAT be the matrix obtained from AT by adjoining
an extra column labeled z with entries zero everywhere except in the last row where it takes the value
1. The vector matroid of matrix A′T is denoted by M ′

T . The transition from M toM ′
T is called element

splitting operation and the matroidM ′
T is called the element splitting matroid.

Let C be a circuit of M, and C ∩ T ≠ ∅ . We say C is a PT-circuit of M, if it is a also circuit of
MT . And if C is not a circuit of MT , we call it an NPT- circuit of M. We use C0 to denote the
collection of P T -circuits and the circuits containing no element of T. Consider subsets of E of the
typeC∪I I where C = {u1, u2, u3, ..., ul} is an NP T -circuit of M which is disjoint from an independent set
I = {v1, v2, v3, ..., vk} and T ∩ (C ∪ I) ≠ ∅ . We say C ∪ I is a PT-dependent set if it contains no member
of C0 and there are non-zero constants α1, α2, ..., αl and β1, β2, .., βk such that

∑l
i=1 βiui +∑

k
j=1 βjvj = 0 and ∑

x∈T∩(C∪I))
coeff.(x)≡ 0(modp).

2 Main results

Lemma 2.1. [3]

Let M be a p -matroid and C1,C2are disjoints NPT -circuits of M. Then C1 ∪C2 is a dependent set
in MT .

Corollary 2.2. Let C1 and C2 be NP T -circuits of M, and I be an independent set of M. Then C1∪C2∪I
cannot be a circuit of MT .

The above lemma characterizes all the circuit ofMT containing z. We denote the class of such circuits
by Cz. Thus Cz = {∪z ∶ CisNPT − circuitofM}

Lemma 2.3. Let C be a circuit of MT .Then z ∈ C if and only if C z is an
NP T -circuit of M.

The above theorem describes the circuits of splitting matroids MT , and the element splitting matroids
M ′

T in terms of the circuits of the original p -matroids M.

Theorem 2.4. Let M be a p -matroid on the ground set E and T ⊂ E. Then

(i) C(MT ) = C0 ∪ C1 ∪ C
(ii) C(M ′

T ) = C0 ∪ C1 ∪ C2 ∪ Cz
where

C0 = {C ∈ C(M):C is a PT-circuit or C ∩ T = ∅}
C1= minimal elements of {C ∪ I ∶ (C ∪ I) is a PT- circuit or C ∩ T = ∅}
C2 = minimal elements of {C1 ∪C2: C1,C2 are NPT-circuits, C1 ∩ C2 = ∅ andC1 ∪ C2 contains no
member of C0and C1}

The above theorem describes the bases of splitting matroids MT , and the element splitting matroids
M ′

T in terms of the bases of the original p -matroids M.

Theorem 2.5. Let M be a p -matroid, T , and M contains an NPT -circuit. Then

(i) B(MT ) = B1 = {B ∪ x ∶ B ∈ B(M), x ∉ B and B ∪x contains neither PT-circuit nor PT-dependent set
}

(ii) B(M ′
T ) = B1 ∪ Bz,whereBz= {B∪z ∶ B ∈ B(M)}.
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Abstract

In this paper we investigate the g-good-neighbor diagnosability of triangle-free graphs under the
MM∗ and PMC models. We show that if G is a triangle-free graph with minimum degree δ and does
not contain any subgraph isomorphic to Kδ,δ, then G is (δ − 1)-diagnosable and also g-good-neighbor
δ-diagnosable under MM∗-model, where g ≥ 2 and ∣V (G)∣ ≥ 2δ + 1. Moreover, if G does not have a
subgraph isomorphic to Kδ−1,δ−1 then it is g-good-neighbor (δ + 1)-diagnosable under PMC model, for
g ≥ 1.

1 Introduction

A system is said to be t-diagnosable if all faulty units can be identified provided the number of faulty units
present does not exceed t. The diagnosability of a system is the maximal number of faulty processors that
the system can guarantee to diagnose.

For the purpose of self-diagnosis of a system, some different models have been proposed. Among the
proposed models, the comparison diagnosis model, which is also called MM model, in [1] and the PMC
model in [3] are widely used. In theMM model, each processor performs a diagnosis by sending the same
inputs to each pair of its distinct neighbors and then compares their responses. The result of a comparison
is either that the two responses agree or disagree. Based on the results of all the comparisons, one needs
to decide the faulty or non-faulty (fault-free) status of the processors in the system. The MM∗ model
was first proposed by Sengupta and Dahbura [4] which is modification of the MM model. In this model
any processor has to test every pair of its adjacent processors. In the PMC model it is assumed that a
processor can test the faulty or fault-free status of another adjacent processor. Under the PMC model,
only processors with direct link are allowed to test each other. In both models, it is assumed that if a
processor is fault-free, it should always give correct and reliable test results and if a processor is faulty,
then its test results may be correct or incorrect. In 2012, Peng et al. [2] proposed a measure for fault
diagnosis of the system, namely, the g-good-neighbor diagnosability, which requires that every fault-free
node has at least g fault-free neighbors.
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2 Preliminaries

In the MM model, a self-diagnosable system of a graph X is often represented by a multigraph M(V,L),
where V and L are the vertex set of X and the labeled edge set, respectively. (u, v;w) is defined as a
labeled edge, if vertices u and v are adjacent to w, which implies that u and v are being compared by w.
Since a pair of vertices may be compared by different vertices, M is a multigraph. For (u, v;w) ∈ L, we
use σ((u, v;w)) to denote the result of comparing vertices u and v by w. For w being fault-free, if both
u and v are fault-free, then σ((u, v;w)) = 0, otherwise σ((u, v;w)) = 1. If w is faulty, σ((u, v;w)) may be
either 0 or 1, which implies the result is unreliable. The collection of all comparison results in M(V,L)
defined as a function σ ∶ L↦ {0,1}, is the syndrome of the diagnosis.

In the PMC model, a self-diagnosable system of a graph G is often represented by a digraph D(V,L),
where V and L are the vertex set of G and the order edge set, respectively. If vertex u is adjacent to
v, (u, v) is defined as a directed edge , which implies that u can test v. For (u, v) ∈ L, we use σ((u, v))
to denote the result of testing vertex v by u. For u being fault-free, if v is fault-free, then σ((u, v)) = 1;
otherwise σ((u, v)) = 0. If u is faulty, σ((u, v)) may be either 1 or 0, which implies the result is unreliable.
The collection of all comparison results in D(V,L) defined as a function σ ∶ L ↦ {0,1}, is the syndrome
of the diagnosis. This study assumes that each node u tests the other whenever they are adjacent to it.

For a given syndrome σ, a fault set F of processors in the system is called to be compatible with the
syndrome σ, if the syndrome can arise from the circumstance that all vertices in F are faulty while all
vertices in V (G) − F are fault-free. A faulty comparator can lead to unreliable results, so a set of faulty
vertices may produce different syndromes. Let σF = {σ ∣ σ is compatible with F}. Two distinct subsets
F1 and F2 of V (X) are said to be indistinguishable if and only if σF1 ∩ σF2 ≠ ∅; otherwise, F1, F2 are
distinguishable.

A faulty set F ⊂ V is called a g-good-neighbor faulty set if ∣N(v)∩(V −F )∣ ≥ g for every vertex v ∈ V −F
. A g-good-neighbor cut of a graph G is a g-good-neighbor faulty set F such that G − F is disconnected.
Suppose that F1 and F2 are two distinct g-good-neighbour faulty subsets of G, with ∣F1∣ ≤ t, ∣F2∣ ≤ t, G is
called g-good-neighbour t-diagnosable if and only if F1 and F2 are distinguishable for any distinct pair of
(F1, F2).

3 Main results

Lemma 3.1. Any triangle-free graph G = (V,E) with ∣V ∣ ≥ 2δ is (δ − 2)-diagnosable.

Lemma 3.2. The complete bipartite graph Kn,n(n ≥ 2) is not (n − 1)-diagnosable.

Theorem 3.3. Let G = (V,E) be a triangle-free graph with ∣V ∣ ≥ 2δ. Then G is (δ−1)-diagnosable under
the MM∗ model if G has not subgraph isomorphic to Kδ,δ, otherwise G is (δ − 2)-diagnosable.

Lemma 3.4. Any triangle-free graph G = (V,E) with ∣V ∣ ≥ 2δ is g-good neighbor (δ − 1)-diagnosable for
g ≥ 2.

Lemma 3.5. The complete bipartite graph Kn,n is not g-good neighbor n-diagnosable, for any 1 ≤ g ≤ n
2
.

Theorem 3.6. Let G = (V,E) be a triangle-free graph with ∣V ∣ ≥ 2δ + 1. Then G is g-good neighbor
δ-diagnosable (for g ≥ 2) if G has not subgraph isomorphic to Kδ,δ, otherwise G is g-good neighbor (δ−1)-
diagnosable.

Theorem 3.7. Let G = (V,E) be a connected triangle-free graph with ∣V (G)∣ > 2δ+1 and δ(G) ≥ 3. Then
G is g-good neighbor (δ + 1)-diagnosable (for g ≥ 1) if G has not subgraph isomorphic to Kδ−1,δ−1.
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Abstract

A graph G = (V (G),E(G)) is defined as a k-dot product graph when there exists a function
f ∶ V (G) Ð→ Rk such that f(u).f(v) ≥ 1 for any two adjacent vertices u and v. The dot product
dimension ρ(G) of G denotes the minimum value k in which G is a k-dot product graph. In this paper,
we present an efficient algorithm for characterization of dot product dimension of disconnected graphs
with one cycle, where the length of the cycle is greater than or equal to 5.

1 Introduction

Let N denote a social network in which a user is a friend with some other users.
Two users are considered friends if and only if their features are similar. We consider a vector rep-

resentation of the network N . We denote the feature vector of a user u as uuu, where uuu is a vector of k
features in k dimensions. Let M = {uuu∣u ∈ V }. In this paper, we consider a mathematical model known as
the dot product model. According to this model, two users, denoted as u and v, are considered friends if
and only if uuu.vvv ≥ t, for some fixed, positive threshold t. Let G be a graph associated with N where each
vertex represents some user and each edge specifies a friendship between the two endpoints. M with a
given threshold t is called a k-dot product representation of G, and G is called a k-dot product graph,
where each edge uv satisfies uuu.vvv ≥ t.

Graphs with dot product dimension one can be identified in polynomial time [4]. Kang and Mller
proved that recognizing graphs of any fixed dot product dimension k ≥ 2 is NP -hard [5]. Fiduccia et
al. examined the dot product dimension of complete multipartite, bipartite, interval graphs and trees
[4]. The dot product dimension of unicyclic graphs and connected graphs with at most two cycles are
characterized [2, 3]. In our recent paper, we classified the dot product dimension of disconnected graphs
with one cycle [1].
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Figure 1: The graphs H, W, W1 and W2 of Theorem 2.2.

In this paper, we obtain an efficient algorithm that specifies the dot product dimension of disconnected
graphs that have one cycle with length greater than or equal to five.

2 Main results

In this section, we state some of new results on the dot product dimension.

2.1 Some Facts

Definition 2.1. W2 is a disconnected graph that is obtained from two components Cn, n ≥ 6, and P2 (the
graph depicted in Figure 1).

Theorem 2.2. [1, 2] If G is H, W, W1 or W2 (the graphs depicted in Figure 1), then ρ(G) = 3.

Theorem 2.3. [1] Let G be a disconnected graph with one cycle that has length greater than or equal to
5. Then we have the following statements.

(I) ρ(G) = 3, if G contains one of the graphs depicted in Figure 1 as an induced subgraph, and

(II) ρ(G) = 2, otherwise.

2.2 Our Algorithms

Given a disconnected graph G, we use Depth-First Search (DFS) to efficiently count the number of cycles
and components in the graph and it take O(V +E) time. Now we give Algorithm 1 to compute the dot
product dimension of G, which is based on Theorems 2.2 and 2.3. We assume that the graph is represented
as a data structure-adjacency list.

Algorithm 1: Main Algorithm

1 Input G, A, B, C
2 Output dot product dimension of G: ρ
3 Legend C is the cycle in G
3 Legend A is the component that contains C
4 Legend B = G/A
6 if ∣A∣ = 5 then
7 ρ =AEQUAL (G,A,B,C)
8 else if ∣A∣ ≥ 6 then
9 ρ = BEQUAL (G,B,C)

Next, we explain the details of the subfunctions called in Algorithm 1.
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AEQUAL(G, A, B, C): Starting from each vertex s in the cycle, denoted by A, we run Breadth
First Search (BFS), to compute the distance of each vertex a from s in the Breadth First tree, and we
denote by d.a; note that d.s = 0. This takes O(V +E) time, where V is the number of vertices and E is
the number of edges. Since G is an outerplanar graph, the time complexity is O(V ). Lines 3 to 4, lines 5
to 13, and lines 14 to 17 of Algorithm 2 detect the induced subgraph W depicted in Figure 1, the induced
subgraph H depicted in Figure 1, the induced subgraph W1 depicted in Figure 1, respectively. Algorithm
2 takes O(E) time. Since G is an outerplanar graph, the time-complexity of Algorithm 2 is O(∣V ∣). For
other cases (lines 18 to 19), the algorithm returns 2; this takes Θ(1) time.

Algorithm 2: AEQUAL(G, A, B, C)

1 Output dot product dimension of G: ρ
2 Legend ∣C ∣ = 5
3 if ∃ u, v, c ∈ C s.t deg[u], deg[v], deg[c] ≥ 3 && v ∈ adj[u], distance(c, v) = distance(c, u) = 2 && ∃ l ∈ V
s.t deg[l] ≥ 2 && l ∈ adj[c]/{C} then
4 return 3
5 for each s ∈ C do
6 if ∃ u, v ∈ C s.t deg[u], deg[v] ≥ 3 , v ∈ adj[u] && ∃ c ∈ adj[u] s.t c ∉ C,deg[c] ≥ 2 then
7 return 3;
8 for each s ∈ C do
9 if ∃ a ∈ V (A) s.t a.d = l && ∃ b, c ∈ adj[a]/C s.t b.d = c.d = l + 1 && deg[b], deg[c] ≥ 2 then
10 return 3;
11 for each s ∈ B do
12 if ∃ a, b, c ∈ adj[s] s.t deg[a], deg[b], deg[c] ≥ 2 then
13 return 3;
14 for any two adjacent verices u , v in C do
15 if deg[u], deg[v] ≥ 3 then
16 if ∃ v ∈ V (B) s.t deg[v] ≥ 1 then
17 return 3
18 else
19 return 2;

BEQUAL(G, B, C): Lines 3 to 8, and lines 9 to 10 of Algorithm 2 detect the induced subgraph
H depicted in Figure 1, the induced subgraph W2 depicted in Figure 1, respectively. Algorithm 2 takes
O(E) time. Since G is an outerplanar graph, the time-complexity of Algorithm 2 is O(∣V ∣). For other
cases (lines 11 to 12), the algorithm returns 2; this takes Θ(1) time.

Algorithm 3: BEQUAL(G, B, C)

1 Output dot product dimension of G: ρ
2 Legend ∣C ∣ ≥ 6
3 for each s ∈ V (C) do
4 if ∃ v ∈ V (G) s.t v ∉ V (C), v ∈ adj[s] and deg[v] ≥ 2 then
5 return 3;
6 for each s ∈ B do
7 if ∃ a, b, c ∈ adj[s] s.t deg[a], deg[b], deg[c] ≥ 2 then
8 return 3;
9 else if ∃ v ∈ V (B) s.t deg[v] ≥ 1 then
10 return 3;
11 else
12 return 2;

2.3 Time-Complexity

According to the time-complexity of Algorithms 2 to 3, Algorithm 1 takes time O(∣V ∣).
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Abstract

In this note, we review some results and investigate mixed partitions with extra condition on the
sizes of the blocks. We find some recurrence relations and a connection to r-Stirling numbers.

1 Introduction

Set partitions are fundamental and well studied combinatorial objects. Partitions of the set [n] =
{1,2, . . . , n} into k non-empty unlabeled blocks are enumerated by the Stirling numbers of the second
kind, also called sometimes set-partition numbers, denoted by {n

k
}. Stirling numbers of the second kind

are sometimes introduced by the fundamental recurrence relation:

{n
k
} = {n − 1

k − 1
} + k{n − 1

k
}

with the initial values {0
0
} = 1 and {n

0
} = {0

n
} = 0.

The following classical problem was considered in [4]:

Problem 1.1. Consider b1 + b2 +⋯ + bn balls with b1 balls labeled by 1, b2 balls labeled by 2, ..., bn balls
labeled by n and c1 + c2 +⋯+ ck cells with c1 cells labeled by 1, c2 cells labeled by 2, ..., ck cells labeled by
k. Evaluate the number of ways to partition the set of these balls into cells of these types.

The authors in [4] derived some interesting results about the special case b1 = b2 = ⋯ = bn = 1 and
c1 = r, c2 = ⋯ = ck = 1 where n, k and r are positive integers. For the number of partitions of this type, the
notation S(n, k, r) was used. We call these numbers mixed Stirling numbers of the second kind. Also in
[2] The r-Stirling numbers, denoted by {n

k
}
r
, were introduced as the number of partitions of an n-element

set into k non-empty subsets such that the first r elements are in distinct subsets.
It is proved that
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Theorem 1.2. [4] For positive integers n, k and r we have

S(n, k, r) = Σn−k+1
l=r (n

l
){l
r
}{n − l
k + 1

}(k − 1)!.

It is also shown that

Theorem 1.3. [1] For positive integers n, k and r with r ≤ k ≤ n, we have

{n
k
}
r
= Σk

i=0(
r

i
)S(n − 1, i + 1, k − 1)

All standard notations in this note may be found in [3].

2 Main results

In the next theorem, we consider another special case b1 = b2 = ⋯ = bn = 1 and c1 = t, c2 = ⋯ = ck = 1 such
that the first r balls are in distinct cells, where n, k, r and t are positive integers and denote this number
by F (n, k, t)r.

Theorem 2.1. For positive integers n, k, r and t we have

F (n, k, t)r = Σmin r,t
i=0 Σn−t

k−1+r−t(
n − t
l
)(t
i
)(k − 1
t − i
)(t − i)!(n − t − l)tS(l, k − 1 + r − t, r − i)
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Abstract

We derive an enhanced upper bound for the regularity of the parity binomial edge ideal of a class
of unicyclic graphs. We also determine the exact value of the regularity of binomial edge ideal of a
generalization of caterpillar graphs considered in [1].

1 Introduction and Preliminaries

Let G be a simple graph with the vertex set [n] = {1, . . . , n} and the edge set E(G). Denoted by Kn, we
mean the complete graph on n vertices. For a subset W ⊆ V (G), G [W ] represents the induced subgraph
of G on the vertex set W , i.e. for i, j ∈ W , one has {i, j} ∈ E(G [W ]) if and only if {i, j} ∈ E(G). In
particular, G/v is the induced subgraph of G on the vertex set V (G)/ {v}. A vertex v ∈ V (G) is a cut
vertex of G whose deletion increases the number of connected components in G. A subset U of V (G)
forms a clique if the induced subgraph G [U] is a complete graph. Furthermore, a vertex v is called a
free vertex if it belongs to only one maximal clique; otherwise, it is called an internal vertex. Here, iv(G)
denotes the number of internal vertices in G. The neighborhood of a vertex v in G, denoted by NG(v), is
the set of vertices adjacent to v. Given vertex v, Gv is the graph on the vertex set V (G), and the edge
set E(Gv) = E(G)∪{{u,w} ∶ u,w ∈ NG(v)}. For an edge e in G, G/e represents the graph with the vertex
set V (G) and the edge set E(G)/ {e}. Let u, v ∈ V (G) such that e = {u, v} ∉ E(G). Then, Ge denotes the
graph with the vertex set V (G) and the edge set E(Ge) = E(G)∪{{x, y} ∶ x, y ∈ NG(u) or x, y ∈ NG(v)}.
A cycle on n vertices is denoted by Cn. A graph is a unicyclic graph if it has precisely one cycle. An odd
unicyclic graph is a unicyclic graph with an odd cycle.

Now, let us review some essential notations from commutative algebra. For any homogeneous ideal I
in the polynomial ring R = K[x1, . . . , xm], there exists a graded minimal free resolution

0→⊕
j

R(−j)βp,j(R/I) → ⋯→⊕
j

R(−j)β1,j(R/I) →⊕
j

R(−j)β0,j(R/I) → R/I → 0,
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Figure 1: A closed caterpillar

where R(−j) is derived from R by a degree shift of j and βi,j(R/I), representing the (i, j)-th graded Betti
number of R/I, corresponds to the number of minimal generators of degree j in the i-th syzygy module
of R/I. The regularity of R/I, denoted by reg(R/I), is defined as

reg(R/I) =max{j − i ∶ βi,j(R/I) ≠ 0} .

Now, we introduce two types of ideals associated with graphs, known as the binomial edge ideal and
the parity binomial edge ideal, which were initially introduced by Herzog et al. in [2] and independently
by Ohtani in [7], and Kahle et al. in [5].

Definition 1.1. Let G be a simple graph on the vertex set [n], i.e. G has no loops and no multiple edges.
Furthermore, let K be a field and S = K [x1, . . . , xn, y1, . . . , yn] be the polynomial ring in 2n variables. For
i < j, we set

fij = xiyj − xjyi , gij = xixj − yiyj .
The binomial edge ideal of G is defined as

JG = (fij ∶ {i, j} ∈ E (G) ) ⊂ S.

The parity binomial edge ideal of G is defined as

IG = (gij ∶ {i, j} ∈ E (G) ) ⊂ S.

2 Main result

In this section, we state some results on a conjecture due to Kahle and Krüsemann. In [4], Kahle and
Krüsemann proposed a conjecture stating that for a connected graph G on the vertex set [n], one has
l(G) ≤ reg(S/IG) ≤ n, where l(G) represents the length of the longest induced path in G. In [6], Kumar
established the validity of this conjecture for some classes of graphs. Additionally, Kumar classified those
graphs for which the regularity of their parity binomial edge ideal is 3. Hoang and Kahle computed the
precise value of the regularity of parity binomial edge ideals of complete graphs [3].

A caterpillar tree is defined as a tree T that possesses a path P , where every vertex of T is either a
vertex of P or is adjacent to a vertex of P . Let u and v denote the initial and terminal vertices of the
path P , respectively. Let G be the graph obtained by gluing a complete graph and any number of leaves
to u as well as v. We call the graph G a closed caterpillar graph (see Figure 1).

Proposition 2.1. Let G be a closed caterpillar graph. Then

reg( S
JG
) = l(G).

Theorem 2.2. Let G be a unicyclic graph obtained by gluing some paths of any length to some of the
vertices of an odd cycle. Then

reg( S
IG
) ≤ ∣V (G)∣ − t(G),

where t(G) is the number of leaves of G.
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Abstract

The saturation number of a graph G is the cardinality of any smallest maximal matching of G, and
it is denoted by S(G). Finding the saturation number of a graph is an NP-hard problem in general,
but it is polynomial time solvable for some classes of graphs. In this paper, we present some bounds of
saturation number in fullerene graphs in terms of the number of vertices and the diameter of the graph.

1 Introduction

Let G = (V,E) be a simple graph. A matching in G is a subset M of E such that no two edges of M
have a vertex in common. If every vertex v ∈ V is incident with an edge e ∈M , we say that the matching
M is perfect.

A matching M in G is maximal if for every e ∈ E ∖M , the set M ∪ e is not a matching. In other
words, a matchingM is maximal if it is not a subset of some other matching in G. The saturation number
of G is the cardinality of any smallest maximal matching of G, and it is denoted by S(G).

Fullerenes are polyhedral molecules made entirely of carbon atoms.
A fullerene graph is a 3-connected 3-regular planar graph with only pentagonal and hexagonal

faces. By Euler‘s furmula, it follows that the number of pentagonal faces is always twelve. Grubaum and
Matzkin [5] showed that fullerene graphs with n vertices exist for all n ⩾ 24 and for n = 20, i.e., there
exists a fullerene graph with α hexagons where α is any integer distinct from 1. Although the number of
pentagonal faces is negligible compared to the number of hexagonal faces, their layout is crucial for the
shape of a fullerene graph. If all pentagonal faces are equally distributed, i.e. their centers are vertices
of regular icosahedra, we obtain fullerene graphs of spherical shape with icosahedral symmetry, whose
smallest representative is dodecahedron. On the other hand, there is a class of fullerene graphs of tubular
shapes, calld nanotubes.

2 Main results

In this section, we state some of results on the bounds of saturation number of fullerene graphs.
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Proposition 2.1. [3] let G be a fullerene graph on n vertices. Then

⌈n
4
+ 1⌉ ⩽ S(G) ⩽ n

2
− 2 (1)

The only property of fullerene graphs used to establish the bounds of proposition 2.1 was their 2-
extandibility. A graph G on n ⩾ 2(n + 1) vertices is n-extendable if it contains a set of n-independent
edges and if any such set can be extended to a perfect matching in G. The lower bound follows directly
from theorem 4.3 of [6], while the upper bound was derived considering certain nice subgraphs of fullerene
graphs (Subgrapg G′ of any graph G is nice if G−V (G′) has a perfect matching.). it turns out that using
another property of fullerene graphs, their 3-regularity, yields a better lower bound on S(G).

Proposition 2.2. [7] let G be a d-regular graph. Then the size of any maximal matching in G is at most
(2 − 1

d
)S(G).

By the proposition 2.2 we obtain a lower bound on saturation number of fullerene graphs:

Theorem 2.3. [4] let G be a fullerene graph on n vertices. Then S(G) ⩾ 3n
10
.

The following result shows that the regularity of fullerene graphs in fact provides quite good lower
bound, and is much more important for their saturation number than 2-extendibility.

Theorem 2.4. [4] For each even integer n ⩾ 24 there is a fullerene graph G on n vertices such that
S(G) ⩽ ⌈n

3
⌉.

Andova in [2] improve the lower bound on the saturation number of fullerene graphs:

Theorem 2.5. [2] Let G be a fullerene graph on n vertices. Then

n

3
− 2 ⩽ S(G) ⩽ n

3
+ o(n). (2)

The lower bound in last theorem turns out to be tight. There are infinitely many fullerene graphs
with the saturation number equel to n

3
− 2: for example, an (8,0) nanotube with 3k + 1 rings of hexagons

and with caps depicted in Figure 1 has 48k + 60 vertices and admits a maximal matching of size 16k + 18.

Figure 1: A cap of an (8, 0)-nanotube with saturation number n
3

By comparing the lower bound above (n
3
−2) and bound in theorem 2.3, ( 3n

10
), we find that a fullerene

graph can only admit a maximal matching of size exactly 3n
10

if it has at most 60 vertices. This can occur
for fullerene graphs having exactly 20, 30, 40, 50 or 60 (Figure 2).

The distance between two vertices u, v ∈ V (G) in a connected graph G is the length of any shortest
path between these vertices, and it is denoted by d(u, v). A diameter of connected graph G, diam G, is
the maximum distance between two vertices of G, i.e., diam(G) =max{d(u, v)∣u, v ∈ V (G)}.

Andova in [1] establish lower and upper bounds for the diameter of fullerene gaphs and use the results
to improve the upper bound on their saturation number.

Theorem 2.6. [1] let G be a fullerene graph with n vertices. Then,

S(G) ⩽ n
2
− 1

4
(diam(G) − 2), (3)

In particular,

S(G) ⩽ n
2
−
√
24n − 14 − 15

24
. (4)
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Figure 2: Fullerenes on n = 40,50,60 with saturation number 3n
10
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Abstract

Let R be a commutative ring with identity and N.C(R) be the set of all nil clean elements of R.
In this paper, we examine the nil clean graph of R, denoted by GN(R), that vertices of GN(R) are
all nonzero elements of R and two distinct vertices x and y are adjacent if and only xy ∈ N.C(R).
We investigate the properties of the nil clean graph GN(R) where R is a direct product of Zpi ’s for
some prime numbers p1, p2,⋯, pt. We obtain some graph theoretic properties of the nil clean graph like
diameter, girth, clique number, chromatic number.

1 Introduction

The association of a graph with an algebraic object is a dynamic topic in algebraic graph theory. There
are many articles about assigning a graph to a ring. Since the idempotents, nilpotents and unit elements
of a ring are the main tools for recognizing the structure of the ring, various definitions of graphs related
to rings have been given using the concepts. These concepts each characterize the ring structure in many
ways. In these structures, the condition of frequently connected vertices is that the sum, difference, or
product of the vertices can be zero divisors, a unit, ora nilpotent element, for example, zero divisor graphs
[3], unitary Cayley graph [2], a kind of graph structure [5]

Introducing the concept of nil clean elements in [8], The elements are written as the sum of an
idempotent element and a nilpotent element, creating a broad field of interesting topics to research,
leading to many fascinating topics for occasion see, [4, 6, 7, 9].

Now, let us recall some standard terminology and notations which will be used in this paper. Through-
out, unless specially stated, R will be a commutative ring with unity and as usual the rings of integers
modulo n will be denoted by Zn. If a = e + n, where e is an idempotent and n is a nilpotent of R, then
a is called nil clean. By Id(R), Nil(R) and U(R), we mean the sets of idempotent, nilpotent and unit
elements of R, respectively. A ring R is said to be nil clean if each element of R is nil clean. The set of
nil clean elements of R is denoted by N.C(R). We associate a (simple) graph GN(R) for ring R with
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Figure 1: GN(Z6)

vertices V (GN(R)) = R− {0}, and for distinct x, y ∈ R− {0}, the vertices x and y are adjacent if and only
if xy ∈ N.C(R).

2 Main results

The focus of this section will be on elucidating the concept of the nil clean graph of a commutative ring
and emphasizing its notable characteristics.

Definition 2.1. The nil clean graph of a ring R, denoted by GN(R) is defined by vertices V (GN(R)) =
R − {0}, and for distinct x, y ∈ R − {0}, the vertices x and y are adjacent if xy ∈ N.C(R).

As defined, the “nil clean graph” extends beyond the idea of the zero divisor graph. As an example,
the nil clean graph GN(Z6) is shown below:
It is easy to see that Nil(Z6) = {0} and Id(Z6) = {0,1,3,4}, and so N.C(Z6) = Id(Z6).

A complete graph is one where each vertex is adjacent to all the other vertices and a complete graph
on n vertices is denoted by Kn. The following result tells us when the graph GN(R) is complete.

Theorem 2.2. The nil clean graph GN(R) is complete if and only if R is nil clean ring.

Example 2.3. The current illustration will lead us to the subsequent declaration.

(a)
GN (Z2)

(b) GN (Z3) (c) GN (Z13)

Figure 2:

Corollary 2.4. For any prime number p ≠ 2, GN(Zp) has two isolated vertices 1̄ and p − 1 and the other
vertices have a degree value of 1. Morovere, the number of edges equals to p−3

2
.

The next result specifies the degree of each vertex in graph GN(R) where R = Zp1 × Zp2 × ⋯Zpn , for
some prime integers p1, p2,⋯, pn.
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Proposition 2.5. Let (x̄1, x̄2,⋯, x̄n) ∈ R where R = Zp1×Zp2×⋯Zpn for some prime integers p1, p2,⋯, pn.
Then

(i) deg(x̄1, x̄2,⋯, x̄n) = 2n − 1, if x̄j ∉ U ′(R) for some 1 ≤ j ≤ n and x̄i ≠ 0̄ for all 1 ≤ i ≤ n.
(ii) deg(x̄1, x̄2,⋯, x̄n) = 2n − 2, if x̄i ∈ U ′(R) for all 1 ≤ i ≤ n and x̄i ≠ 0̄ for all 1 ≤ i ≤ n.
(iii) deg(x̄1, x̄2,⋯, x̄n) = 2n−k(pi1pi2⋯pik) − 1, if x̄ij = 0̄ for some 1 ≤ j ≤ k and x̄ij ≠ 0̄ for all j > k and

x̄ij ∉ U ′(R) for some j > k.
(iv) deg(x̄1, x̄2,⋯, x̄n) = 2n−k(pi1pi2⋯pik) − 2, if x̄ij = 0̄ for some 1 ≤ j ≤ k and x̄ij ≠ 0̄ and x̄ij ∈ U ′(R)

for all j > k.

For distinct vertices x and y of G, let d(x, y) be the length of the shortest path from x to y and
in case there is no such path, we define d(x, y) = ∞. The diameter of G is diam(G) = sup{d(x, y) ∶
x and y are distinct vertices of G}. In the event that u and v are two adjacent vertices, then we type in
x ∼ y. The diameter of graph GN(R) where R = Zp1 ×Zp2 ×⋯Zpn for some prime integers p1, p2,⋯, pn, is
located in the result that follows.

Theorem 2.6. Let R = Zp1 ×Zp2 ×⋯Zpn for some prime integers p1, p2,⋯, pn. Then diam(R) = 4.

Proof. Let a = (x̄1, x̄2,⋯, x̄n) and b = (ȳ1, ȳ2,⋯, ȳn) be two nonzero vertices in R.
Case 1: If for all i, xi ≠ 0 ≠ yi then

(x̄1, x̄2,⋯, x̄j ⋅ x̄n) ∼ (0̄, 0̄,⋯, x̄j−1⋯0̄) ∼ (ȳ1−1, ȳ2−1,⋯, y−1j−1, 0̄, y−1j+1,⋯ȳn−1) ∼ (ȳ1, ȳ2,⋯, ȳn)

is a path between a and b and so d(a, b) = 3.
Case 2: If for some 1 ≤ i, j ≤ n, x̄i ≠ 0̄, ȳj ≠ 0̄, x̄ij ≠ 0̄ and ȳit ≠ 0̄, then

(1) If j ≠ t then

(x̄1, x̄2,⋯, x̄ij ,⋯, x̄n) ∼ (0̄, 0̄,⋯, x̄−1ij ⋯0̄) ∼ (0̄, 0̄,⋯, ȳ
−1
it
,⋯0̄) ∼ (ȳ1, ȳ2,⋯, ȳn)

is a path between a and b and so d(a, b) = 3.
(2) If j = t then

(x̄1, x̄2,⋯, x̄ij ,⋯, x̄n) ∼ (0̄, 0̄,⋯, x̄−1ij ⋯0̄) ∼ (ȳit , 0̄,⋯, 0̄) ∼ (0̄, 0̄,⋯, ȳ
−1
it
⋯0̄) ∼ (ȳ1, ȳ2,⋯, ȳn)

is a path between a and b and so d(a, b) = 4

The girth of a graph G is the length of the shortest cycle in G, indicated by gr(G). Note that if there
is no cycle in G, at that point gr(G) =∞.

Remark 2.7. Let R = Zp1 ×Zp2 ×⋯Zpn for some prime integers p1, p2,⋯, pn. then we have the following
cycle:

Figure 3: GN(Zp1 ×Zp2 ×⋯Zpn)

Theorem 2.8. Let R = Zp1×Zp2×⋯Zpn , for some prime integers p1, p2,⋯, pn. Then NG(R) is a connected
graph and diam(GN(R)) = 4. Moreover, gr(GN(R)) = 3.
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Let R = Zpn for prime integer p and n ∈ N. Then Nil(R) = {0, p,⋯, (pn−1 − 1)p}. such we know
Nil(R1 ×R2 ×⋯ ×Rt) = Nil(R1) ×Nil(R2) ×⋯ ×Nil(Rt) so

Nil(Zp
α1
1
×Zp

α2
2
⋯×Zpαn

n
) =

{(0̄, 0̄, ..., 0̄), (p1, 0̄,⋯, 0̄), (2p1,⋯, 0̄),⋯, ((pn−11 − 1)p1, (pn−12 − 1)p2,⋯, (pn−1n − 1)pn)}

therefor we have the following result:

Proposition 2.9. Let R = Zp
α1
1
×Zp

α2
2
⋯×Zpαn

n
for prime integer pi ≠ 2 and αi ≥ 2 Then diam(GN(R)) = 2

and gr(GN(R)) = 3.

Proof. For all X = (x1, x2,⋯, xn), Y = (y1, y2,⋯, yn) ∈ R where xi, yi ∈ Zpi,

1. If X ∈ Nil(R) or Y ∈ Nil(R) then X ∼ Y is a path between X and Y and d(x, y) = 1.
2. If X,Y ∉ Nil(R) then X ∼ (p1, p2,⋯, pn) ∼ Y is a path between X and Y and d(X,Y ) = 2 so
diam(GN(R)) = 2.

A clique of a graph G is defined as a complete subgraph of G. The clique number of G, denoted by
ω(G), is the number of vertices in a largest complete subgraph of G. In case Kn ⊆ G for each integers
n ≥ 1, we set ω(G) = ∞. A k-coloring of G is an assignment of k colors {1,⋯, k} to the vertices of G,
one color to each vertex, so that adjacent vertices are colored differently. The graph G is k-colorable in
the event that G features a proper k-coloring. The chromatic number of G, χ(G), is the minimum k for
which G is k-colorable.

Theorem 2.10. For any prime number p,

i. If p = 2 or p = 3, then χ(GN(Zp)) = ω(GN(Zp)) = 1
ii. If p ≠ 2,3, then χ(GN(Zp)) = ω(GN(Zp)) = 2.
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Abstract

For a graph G = (V (G),E(G)) of order n. The adjacency matrix of G is denoted by A(G), and
the Laplacian matrix is L(G) = D(G) − A(G), where D(G) is the diagonal matrix of vertex degrees.
The eigenvalues of L(G) are called the Laplacian eigenvalues of G. The multiplicity of a Laplacian
eigenvalue µ in a graph G is denoted by mG(µ), while the number Laplacian eigenvalues of G in an
interval I is denoted by mGI. It is well known that mG[0, n] = n for any graph G, however it is not well
understood how the eigenvalues are distributed in the interval [0, n]. Many researchers have focused on
the bound of mGI for some subinterval I of [0, n]. We show that all graphs G ≠ C3,C7 with minimum
degree at least two, mG[1, n] ≥ β′(G) + 1, where β′(G) is the edge covering number of G. We present
a short proof of the known result that mG (n − 1, n] ≤ κ(G), where κ(G) is the vertex connectivity of
G. Additionally, we classify all trees T such that mT (n − i, n] = j, for 1 ≤ i, j ≤ 2. For G with degree
sequence d1 ≥ d2 ≥ ⋯ ≥ dn, we determine the classes of graphs that satisfy the condition mG[0, d1] = 2,
mG[dn, n] = 2 and mG[dn−1, n] = 2.

1 Introduction

Let G = (V,E) be a simple graph. The minimum number of edges needed to cover all vertices is called
the edge covering number of G and denoted by β′ (G). The vertex-connectivity of G, is the minimum size
of a vertex set S such that G/S is disconnected, and demote by κ(G).

2 Main results

Theorem 2.1. Let G be a graph of order n. If G′ is the graph obtained from G ○K1 by adding a vertex
u adjacent to some vertices of G, then mG′ [2, n] = γ(G ○K1) = n.
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Theorem 2.2. If G is a graph of order n with no isolated vertex, then

mG [1, n] ≥ β′ (G),

and the equality holds if µ(G) = q(G).

Theorem 2.3. There is no tree of order n such that mT (n − 2, n] = 2.
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Abstract

In this talk, we show a new formulation of the standard character of the symmetric group Sn and
we use it to obtain some combinatorial relations.

1 Introduction

Symmetric groups play a fundamental role in algebra, combinations, and representation theory. These
groups arise naturally in various mathematical contexts, such as permutation groups and group actions.
The study of symmetric groups provides deep insights into the behavior of symmetric structures and has
wide-ranging applications in different areas of mathematics. In this paper, we delve into the representa-
tion theory of symmetric groups, exploring their irreducible representations and the orthogonal relations
between them. Then as an application we obtain some combinatorial relations.

The representation theory of symmetric groups is a branch of mathematics that studies how symmet-
ric groups, which are groups of permutations, can be represented by matrices or linear transformations.
Symmetric groups have a rich structure due to their connection with combinatorial objects, such as per-
mutations of a finite set. In this theory, irreducible representations play a crucial role. An irreducible
representation of a symmetric group is a representation that cannot be further decomposed into smaller,
non-trivial sub-representations. To construct all irreducible representations of symmetric groups, one ap-
proach is through the use of Young tableaux. Young tableaux provide a combinatorial tool to describe
the irreducible representations of symmetric groups. By associating a Young tableau with a specific shape
to each irreducible representation, one can determine the dimension and other properties of the represen-
tation. The construction of all irreducible representations involves finding all possible Young tableaux,
corresponding to distinct shapes, and determining their associated representations. Another approach to
constructing irreducible representations of symmetric groups is through the use of the character theory.
The character of a representation is a function that associates each group element with the trace of the

∗Speaker
subjclass[2010]: 20C30, 20B30
keywords: symmetric groups, irreducible representation, fixed points

81



K .Dastouri, A. Iranmanesh

corresponding matrix or linear transformation. By studying the characters of the irreducible represen-
tations, mathematicians can determine the number and dimensions of these representations. For further
information about the representation of symmetric groups, we recommend referring to Chapter 8 of [1].

Let Sn be the symmetric group of degree n. Sn acts on Cn by permuting basis vectors, which
defines a representation od degree n. This representation is not irreducible and has a 1-dimensional
sub-representation associated with invariant subspace spanned by the vector

e1 + e2 + . . . + en,

representing the trivial representation. A complementary subspace to this is

V = {a1e1 + . . . + anen ∣a1 + . . . + an = 0}

which often referred to as ”the standard representation” of Sn. The standard representation is both
irreducible and faithful.

The fix point set of a permutation σ in Sn, denoted by Fixn(σ), is defined as:

Fixn(σ) = {i ∈ {1,2, . . . , n} ∣σ(i) = i}

In this definition, Fixn(σ) represents the set of elements that are fixed by the permutation σ, i.e., the
elements that remain unchanged under the permutation.

We call the character associated with the standard representation of Sn as standard character and we
denote χn. By [[2] Proposition 13.24], the standard character evaluates to

χn(σ) = ∣Fixn(σ)∣ − 1

for permutation σ of Sn.
The standard character provides valuable information about the behavior of permutations in Sn. It

tells us the cardinality of the fix point set of a permutation, and by subtracting one, ensures that the
identity element of Sn is mapped to 0. The standard character is an important tool in the representation
theory of symmetric groups.

2 Standard Representation and Fix Point Set

In this section we give a new formulation of the standard character χn, which we will use it to obtain
some result in the next section.

Definition 2.1. Let Sn be the symmetric group of n points. We define subsets Fn,i of Sn for 0 ≤ i ≤ n as
follows:

Fn,i = {π ∈ Sn ∣ ∣Fixn(π)∣ = i}

Theorem 2.2. Let Sn be the symmetric group of n points and X ⊆ Sn.

1. Sn = ⋃n
i=0 Fn,i (Disjoint Union)

2. X = ⋃n
i=0(X ∩ Fn,i) (Disjoint Union)

3. χn has a constant value of i − 1 on elements of Fn,i.

4. ∑π∈X χn(π) = ∑n
i=0(i − 1)∣X ∩ Fn,i∣.

5. For 0 ≤ k < n and π ∈ Sn−k, ∣Fixn−k(π)∣ = ∣Fixn(π)∣ − k.
6. For 0 ≤ k < n and π ∈ Sn−k, χn−k(π) = χn(π) − k.
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3 Some Combinatorial Results

As an application of section 2, we obtain some combinatorial relations.

Theorem 3.1. Let Sn be the symmetric group of n points. Then

1.
n

∑
i=0
(i2 − 2i + 1)∣Fn,i∣ = n!.

2.
n

∑
i=0
(i − 1)∣Fn,i∣ = 0.

3.
n

∑
i=0
(i2 − 1)∣Fn,i∣ = n!(n − 1).
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Abstract

Fraud in the insurance industry is a prevalent issue, particularly in the form of organized schemes
involving deliberate accidents and staged scenes. This paper proposes an algorithm designed to achieve
three primary objectives. Firstly, accidents are modeled using network graph theory, with the subse-
quent identification of suspicious fraud clusters through the application of a Poisson random process.
Secondly, the algorithm calculates the correlation between individuals involved in suspicious activity
using connectivity metrics and the Menger’s theorem. It also examines the probability of such acci-
dents occurring by applying local connectivity numbers in the Poisson process. This process enables
the validation of each accident and individual through the assignment of a label. Lastly, while most
research algorithms in fraud detection utilize data mining or artificial intelligence, this paper overcomes
the challenges posed by highly unbalanced data, including overfitting and reduced accuracy.

1 Introduction

Insurance fraud is a deceptive practice aimed at defrauding insurance companies for financial gain. It
has been a persistent issue since the inception of commercial enterprises, resulting in substantial financial
losses for insurance companies on an annual basis. This type of fraud manifests in various forms across
all sectors of insurance, including a wide range of exaggerated claims, deliberate accidents, and damages.
Organized automobile insurance fraud, which is the focus of this paper, is often performed by groups
in a structured manner, leading to higher costs for insurance companies and subsequently increased
premiums for policyholders. Despite advancements in fraud detection, the financial impact of these scams
on insurance companies continues to escalate.

In the past, the level of organized insurance fraud that could have significant financial consequences for
the insurer was not enough to justify the exploration of potential solutions and the allocation of resources
towards addressing it. However, there has been a notable shift in this scenario, prompting insurance
companies to consider thoroughly investigating the elements influencing insurance fraud. Today, with
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the need to detect fraud in various areas, the use of data mining techniques and machine learning, such
as artificial neural networks, fuzzy logic, and genetic algorithms, have become common tools for fraud
detection due to their high ability in modeling complex problems.

Graph theory is an alternative method that can be employed to identify organized fraudulent activities.
Initially, the issue is mathematically represented by modeling the network of accidents as a graph, thereby
enabling the initial detection of organized fraud. Subsequently, computer science concepts are utilized to
accurately identify the suspicious fraud network. In structures such as national incident databases, an
extensive volume of data is available, making the task of finding relationships between them challenging
and sometimes unfeasible. To address this issue, data mining and machine learning techniques are used.
However, they have significant shortcomings, including computational complexity when handling large
datasets and the existence of imbalanced datasets. While these techniques employ methods such as over-
sampling or under-sampling to manage imbalanced data, they encounter additional challenges such as
overfitting and reduced accuracy. Moreover, despite the discussion of self-validation of incidents in [1]
and [2], no validation has been done for individual cases. Therefore, in this paper, we try to address
these shortcomings through the application of mathematical models, simultaneously investigating the
probability of occurrence of suspicious events and introducing an algorithm for it.

2 Main results

In this section, we examine the main results of the paper. To this end, we first demonstrate that car
accidents are a random process.

Theorem 2.1. The random network between cars over a specific period of time and geographical area is
a Poisson process.

We then use graph theory to model accidents between cars. In this model, the cost that the insurer
pays to the policyholders for an accident is included using Chebyshev’s inequality. Clearly, the existence
of some regular structures in this network contradicts the randomness of car collisions; therefore, they
can be considered as suspicious cases. A novel algorithm with a polynomial time complexity is introduced
to identify such structures in the accident network (first step of the algorithm). We then deal with the
probability of each accident occurring in the network. In other words, we demonstrate that:

Theorem 2.2. Suppose N is a random network. If X represents the number of distinct paths between
any two arbitrary vertices u and v, then X is a Poisson random variable with parameters (P, p) where P
represents the number of paths and p is the probability of the occurrence of a random chain between u and
v.

Now, by utilizing connectivity matrices in the graph, the Menger theorem, and the parameters of
the Poisson process, we initially assign a label based on the probability of each accident occurring and
subsequently employ these labels to validate each insured person (second step of the algorithm).

This labeling can consider multiple policies to facilitate or penalize the insurance process in addition
to the current floatability of insurance. Moreover, the insurer can provide a balanced point between the
insurer and the policyholders so that both parties can achieve their interests. The second suggestion is to
create and examine a broader network that includes all stakeholders in an organized fraud. More precisely,
the network allocates labels to the main stakeholders who benefit from an accident, depending on their
profit, to be examined. Examining this issue enables the insurer to adopt different policies for dealing
with different stakeholders in an accident, such as the insured, car occupants, repairers, etc., to reduce
financial loss and improve public trust.
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Abstract

A forcing set for a perfect matching in a graph G is defined as a subset of the edges of that perfect
matching such that there exists a unique perfect matching containing them. A complete forcing set for
a graph is a subset of its edges, such that it intersects the edges of every perfect matching in a forcing
set of it. The size of a smallest complete forcing set of a graph is called the complete forcing number.
In this paper, we find upper and lower bounds of for the complete forcing number of hypercube graphs.

1 Introduction

For the basic definitions and notation of graph theory, we follow the reference [9]. Let G = (V,E) be a
simple graph. On the vertex set V (G) and the edge set E(G), two edges are called incident if they share
an endpoint vertex. Two edges that are not incident are called disjoint. A set of pairwise disjoint edges is
called a matching of G. A perfect matching of G is a matching that covers all vertices. LetM be a perfect
matching for G. A subset S ⊆ V (G) is called a forcing set of M if M is the unique perfect matching
containing it. The size of the smallest forcing set ofM is called its forcing number. The maximum forcing
number of G is the maximum among the forcing numbers of all perfect matchings of G and is denoted by
F (G). The minimum forcing number of G denoted by f(G), is defined in a similar way.

Xu et al. [1] proposed the concept of the complete forcing set of G, which is defined as a subset of
E(G) on which the restriction of each perfect matching M is a forcing set of M . The smallest cardinality
of any complete forcing sets is called the complete forcing number of G, and is denoted by cf(G).

The main application of this parameter is in studying the Kekule structures of benzoid graphs in
Chemistry.

Let S be a nonempty proper subset of V (G). The set of all edges of G having exactly one end-vertex
in S is denoted by δG(S) (or simply δ(S)) and is called an edge cut of G. A bridge of G is an edge cut
of G consisting of exactly one edge.

A set S ⊆ V (G) is called a 2-independence set of G if, for every two distinct vertices u, v ∈ S, d(u, v) > 2,
where d(u, v) is the distance between u and v. An automorphism of a graph G, is a one-to-one mapping
from the vertex set of G to itself that preserves the adjacency of the vertices. The set of automorphisms of
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G is known to be a group which naturally acts on the set of the vertices as well as the edges. If the action
of this group on the set of vertices (edges) is transitive, then the graph is called vertex (edge) transitive.

The Cartesian product G ×H of two graphs G and H is a graph with the vertex set V (G) × V (H),
such that two vertices (u, v) and (u′, v′) are adjacent, if and only if either u = u′ and vv′ ∈ E(H) or
v = v′ and uu′ ∈ E(G). A hypercube graph, denoted as Qn, is constructed as the Cartesian product of n
complete graphs of order 2 (i.e., K2). Its equivalent representation involves assigning a binary string to
each vertex, and two vertices are adjacent if their binary strings differ in exactly one bit.

It is known that the Cartesian product of vertex-transitive graphs is also vertex-transitive. This does
not hold for the case of edge-transitive graphs, though. For instance, the Cartesian product of two cycles
of different lengths is not edge-transitive. Therefore, Qn is both vertex and edge-transitive graph for every
value of n.

Let Pn and Cn be the path and the cycle with n vertices, respectively. Chang et al. [3] obtained the
formula for the complete forcing number of rectangular polyominoes (Pm × Pn). The obvious next step
can be studying the problem for cylinders (i.e. Pm ×Cn) and tori (i.e Cm ×Cn) graphs.

Recently, He and Zhang [2] established that the complete forcing number of a graph is no more
than twice its cyclomatic number and presented a method for constructing a complete forcing set for a
graph. Using this method, they provided the formula for the complete forcing number of wheels (Wn)
and cylinders.

1.1 Our Contribution

In this work, motivated by the results of [1], we consider the problem of finding the complete forcing
number of the graphs Cm ×Cn for even m.n, Note that when both m,n are odd, the product graph has
no perfect matching and hence the problem is trivial in that case. We show that when both m,n are even
numbers, then the complete forcing number belongs to the set {m.n,m.n+1,⋯,m.n+4}. When n is even
and m is odd, the possibilities reduces to one of the cases {m.n + n

2
,m.n + n

2
+ 1,m.n + n

2
+ 2}. The case

odd n and even m is treated by symmetry. We formally state this result as follows:

Theorem 1.1. Suppose that n,m ≥ 3 .

(i) For odd m and even n:

mn + n
2
≤ cf(Cm ×Cn) ≤mn +

n

2
+ 2

(ii) For even m and odd n :

mn + m
2
≤ cf(Cm ×Cn) ≤mn +

m

2
+ 2

(iii) For both even m and n:
mn ≤ cf(Cm ×Cn) ≤mn + 4

We also propose a general framework for finding a lower bound for the complete forcing number of
an edge-transitive graph. In fact, finding the complete forcing number of Qn is closely related to finding
large-size binary error correction codes of minimum distance 3. There from, we obtain an upper bound
for the complete forcing number of Qn that almost matches our lower bound. The main result of this part
is as follows. For every positive real number α < 1, if n is large enough, then the complete forcing number
of Qn is larger than α fraction of all the edges. The following statements contains the formal statement
of this result.

Theorem 1.2. For every constant c < 1, there exists a value n such that

cf(Qn) ≥ c.∣E(Qn)∣ = c.n.2n−1

Theorem 1.3. For every n ≥ 1, We have

cf(Qn) ≤ n(2n−1 − 2n−⌈log (n+1)⌉)
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Abstract

In this paper, we study the problem of scale embedding of simple weighted graphs into hypercubes.
In the first step, we convert the problem into a question about the existence of a non-negative solution
to a system of linear equations and determine whether there are any scale embeddings or not. Further,
a special case of the linear equation is also investigated and the existence of a non-negative solution is
verified in this case.

1 Introduction

1.1 Preliminaries and notations

Let the graph G = (V,E) be a simple connected graph and d ∶ V (G) × V (G) → Z≥0 the distance function
as the length of the shortest path between each pair of vertices. The hypercube graph Qn has a vertex
set consisting of all binary strings with length n, and two vertices adjacent when their strings differ by a
single bit. l1-distance is defined by dl1(x, y) = ∑

m
i=1 ∣xi−yi∣ for each x, y ∈Rm and (Rm, dl1) called l1-space

for some integer m ≥ 1.

1.2 Prior works

Definition 1.1. A “λ-embedding” of graph G into the hypercube Qn is any mapping ϕ ∶ V (G) → V (Qn)
such that for all vertices x, y ∈ V (G) we have d(ϕ(x), ϕ(y)) = λd(x, y).

If there exist positive integers λ and n for a graph G, then the mapping is called scale embedding.
Also, graph G is λ-embedding into a hypercube. 1-embedding graphs are called “isometric embedding”
too. Embeddings graphs into other graphs can help analyze graph distances more easily. A special kind
of embeddings are those into Hamming graphs, which are Cartesian products of complete graphs. A
special case of Hamming graphs is a hypercube. Hamming embedding of graphs has many applications in
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different fields. For instance, they can model the variations of DNA sequences in molecular engineering
[4]. They can also enable optimal information transfer in communication theory without knowing the
whole network structure [6]. In linguistics, they can measure the similarity of linguistic objects using
simple predicates as vectors [5]. In coding theory, they can optimize the error-detection of codes based
on Hamming distance [7].

Definition 1.2. Graph G is l1 if it can be embedded into a l1-space.

It is shown that a graph is l1 if and only if it is scale embeddable into a hypercube. (See [1]) In [2],
Shpectorov showed that any l1-graph is an isometric subgraph of a Cartesian product of cocktail party
graphs and halved cubes. The property of G being an l1-graph can be recognized in a polynomial time
[2].

2 Main results

We aim to investigate the scale embedding of weighted graphs in this section. We convert it into linear
equations, a general case, and a special case. We study the λ-scale embedding to weighted connected
graphs. Here, the shortest path between a pair of vertices will be concerning weights. Isometric Hamming
embedding of weighted graphs has been studied recently in [8]. The main result of this paper states that:
a weight-minimal weighted graph has a Hamming embedding if and only if a Hamming embedding exists
for each factor of its canonical isometric representation. In contrast to the unweighted case, determining
if an arbitrary weighted graph permits a hypercube embedding is NP-hard. [3]

2.1 Problem setup

λ-scale embedding for a weighted graph can be converted as a linear equation where w is the weight vector
on edges as w = (w1,w2, . . . ,w(n

2
)).

Cx = w where C is a (n
2
) × 2n matrix and x is a vector 2n × 1. When we define C as:

For each i ≠ j, and set s ⊂ {1,2, . . . , n}, the array in the intersection of row {i, j} and column s is 1 if and
only if ∣{i, j} ∩ s∣ = 1.

Theorem 2.1. A weighted graph G with weight vector w is λ-scale embeddable if the equation Cx = w
has a non-negative rational solution.

A special case can be just using binary codes with 2 ones instead of using all binary strings. In this
case, instead of matrix C, we will have matrix L as we find it later.
Consider martix A which is (n

2
) × n for a weighted graph G with n vertices as below:

Each row of A has exactly 2 ones related to different pairs of vertices such as i, j among all n vertices.
Matrix A multiplication to its transpose is a (n

2
)× (n

2
) matrix and equals to L+ 2I. we have the following

equities:(where I is the Identity matrix and J is all 1 matrix)

L = AAT − 2I, (n − 2)I + J = ATA (1)

We are interested in the w’s that the Lx = w has a non-negative solution.

Theorem 2.2. A weighted graph G is λ-scale embeddable by binary codes with 2 ones if the equation
Lx = w has a non-negative solution.

Example 2.3. Consider simple graph G = K3, it is easy to see G is not a 1-scale embeddable into any
hypercube but, it is 2-scale embeddable and it can be seen in the below:

⎛
⎜
⎝

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
−
⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
⇒ x1 = x2 = x3 =

1

2
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We see that the equation Cx = w, has the non-negative rational solution of ( 1
2
, 1
2
, 1
2
). Then the minimum

scale can be the common denominator of rational entries of the solution; here it will be 2. Moreover, the
binary codes on vertices are 110,101,011.

In the next example, we will see an example of a weighted graph that is not λ-scale embeddable with
binary codes with 2 ones.

Example 2.4. Consider the weighted K5 with weights of {w12 = 1,w13 = 3,w14 = 1,w15 = 3,w23 = 2,w24 =
1,w25 = 2,w34 = 3,w35 = 2,w45 = 3}. The equation of Lx = w for this graph has a solution with negative
entries; (− 1

2
, 1
2
, 1
2
, 1
2
,0,− 1

2
,0, 1

2
,2, 1

2
).

Lemma 2.5 (Farkas). Let A ∈Rm×n and b ∈Rm. Then exactly one of the following two assertions is true:

• There exists an x ∈Rn such that Ax = b and x ≥ 0.
• There exists an y ∈Rm such that AT y ≥ 0 and bT y < 0.

Lemma 2.6. The inverse of matrix L as follows: (all of matrices L, I, J,L−1 are (n
2
) × (n

2
))

L−1 = 1
2n−8L +

6−n
2n−8I −

1
(n−2)(n−4)J

Proof. First, we find the (L + 2I)2:

(L + 2I)2 = AATAAT = A((n − 2)I + J)AT = (n − 2)(L + 2I) + 4J = (n − 2)L + 2(n − 2)I + 4J

Also, we know that LJ = 2(n − 2)J which implies that J = 1
(2n−4)LJ . By simplification, we get L−1.

Remark 2.7. We also showed that L−1 exists by finding its eigenvalues which all are non-zero. For this,
we used the fact that AAT ,ATA have the same non-zero eigenvalues.

More precisely, we have:
Matrix I has the eigenvalue 1 with multiplicity of it order, here (n

2
). Matrix J has an eigenvalue of (n

2
)

with a multiplicity of one and its remained eigenvalues are 0. As we have 1, matrix L has an eigenvalue
of n − 2 + (n

2
) − 2 once and the other ones are n − 4. These eigenvalues are non-zero for n > 4 and matrix

L−1 does exist.

Corollary 2.8. When all of the weights of the graph are constant and equal to w, the λ-scale embedding
exists.

Proof. We can easily see that the L−1w is a non-negative vector. In fact, it is equal to n−4
2(n−2)(n−4) which

is non-negative for all n ≥ 4.
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Abstract

The degree distance was introduced by Dobrynin, Kochetova and Gutman as a weighted version of
the Wiener index. In this paper, we investigate the degree distance and Gutman index of some graphs
by using the adjacency and distance matrices of a graph.

1 Introduction

For a graph G, let V (G), E(G) and G denote the set of vertices, the set of edges and the complement of
G, respectively. If G is a connected graph and u, v ∈ V (G), then the distance d(u, v) between u and v is
the length of a shortest path connecting u and v.

Furthermore, the diameter diam(G) of G is defined by diam(G) =max{d(u, v) ∣u, v ∈ V (G)}.
Let G be a finite, simple, connected, undirected graph with p vertices and q edges. In what follows,

we say that G is an (p, q)-graph. The adjacency matrix of G is the p × p matrix A = A(G) whose (i, j)
entry, denoted by aij , is defined by

aij = {
1 if vi and vj are adjacent
0 otherwise.

Let A = [aij]m×n. Then, we define
S(A) = ∑

1≤i≤m, 1≤j≤n
aij .

For k = 1,2,⋯, α where α denotes the diameter of graph G(p, q), we define

Ak = [akij]p×p,

where akij = {
1 d(vi, vj) = k
0 otherwise.

The distance matrix of G is the p×p matrix DG whose (i, j) entry, denoted

by dij , is defined by

dij = {
d(vi, vj) if vi ≠ vj
0 otherwise.
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The oldest and most studied degree-based structure descriptors are the first and second Zagreb indices
[6], defined as

M1(G) = ∑
v∈V (G)

(dG(v))2 and M2(G) = ∑
uv∈E(G)

(dG(u)) (dG(v)) .

It has been shown that the first Zagreb index obeys the identity [4]

M1(G) = ∑
uv∈E(G)

(dG(u) + dG(v)) .

The first investigation of the sum of distance between all pairs of vertices of a (connected) graph was
done by Harold Wiener in 1947, who realized that there exists a correlation between the boiling points of
paraffins and this sum [7]. Eventually, the distance–based graph invariant,

W (G) = ∑
{u,v}⊆V (G)

d(u, v) = 1

2
∑

u,v⊆V (G)
d(u, v)

.
The degree distance was introduced by Dobrynin and Kochetova [3] and Gutman [5] as a weighted

version of the Wiener index. The degree distance DD(G) of a graph G is defined as

DD(G) = ∑
{u,v}⊆V (G)

d(u, v)[dG(u) + dG(v)] =
1

2
∑

u,v∈V (G)
d(u, v)[dG(u) + dG(v)]

with the summation runs over all pairs of vertices of G. The degree distance is also known as the
Schultz index in chemical literature; In [5], Gutman showed that if G is a tree on n vertices, then
DD(G) = 4W (G) − n(n − 1). In [2], Gutman index Gut(G) of a graph G is defined as

Gut(G) = ∑
{u,v}⊆V (G)

dG(u)dG(v)d(u, v).

For more details on Gutman index, we refer to [1].

2 Main Result

In this section, we give our main results and their proofs:

Lemma 2.1. Let DG be the distance matrix of graph G. Then, S(DG) = 2W (G). In particular, if
diam(G) = 2 then W (G) = 2(p

2
) − q.

Proof.

S(DG) =
p

∑
i=1

p

∑
j=1

d(vi, vj) = 2 ∑
{vi,vj}⊆V

d(vi, vj)

= 2W (G).

In particular, we have

2W (G) = S(DG) = S(A + 2A)
= 2S(A +A) − S(A) = 2S(K) − S(A)

= 2p(p − 1) − 2q = 4(p
2
) − 2q.

Therefore, W (G) = 2(p
2
) − q.

Lemma 2.2. Let G(p, q) be a graph, then
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(1) S(ADG) =DD(G);
(2) if diam(G) = 2 then DD(G) = 4(p − 1)q −M1(G);
(3) if diam(G) = 3 and G has no triangles, then

DD(G) = 6q(p − 1) − 2M1(G) −N1(G),

and

W (G) = 3

2
p(p − 1) − 2q − q′.

Lemma 2.3. et G be a (p, q)-graph then

(1) Gut(G) = 1
2
S(ADGA).

(2) If diam(G) = 2, then Gut(G) = 4q2 −M1(G) −M2(G).
(3) If diam(G) = 3 and G has no cycles of size 3 then

Gut(G) = 6q2 − 3

2
M1(G) − 2M2(G) −N2(G).

Theorem 2.4. Let G(p, q) be a tree graph such that diam(G) = 4, then
(1) W (G) = 2(p − 1)2 −M2(G).
(2) DD(G) = (p − 1)(7p − 8) − 4M2(G).
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Abstract

In this paper, we state some results about characteristic and Laplacian characteristic polynomials
of a caterpillar T (m,n, p).

1 Introduction

All graphs in this paper are finite and undirected with no loops or multiple edges. Let G be a graph. The
vertex set and the edge set of G are denoted by V (G) and E(G), respectively. The Laplacian matrix of G
is L(G) =D(G) −A(G), where D(G) = diag(d(v1), . . . , d(vn)) is a diagonal matrix and d(v) denotes the
degree of the vertex v in G and A(G) is the adjacency matrix of G. The characteristic polynomial and
Laplacian characteristic polynomial of G are denoted by ψG(λ) = det(λI − A) and φ(L(G)) = det(µI −
L(G)), respectively. Also, denoting eigenvalues and Laplacian eigenvalues of G by λ1(G) ≥ ⋯ ≥ λn(G)
and µ1(G) ≥ ⋯ ≥ µn(G) = 0, respectively. In this talk, we shall use the notation λk(G) (µk(G)) to denote
the kth eigenvalue (Laplacian eigenvalue) of G. Two non-isomorphic graphs are said to be co-spectral if
they have the same eigenvalues with the same multiplicities. The path and the star graph of order n are
denoted by Pn and Sn, respectively. A one-edge connection of two graphs G1 and G2 is a graph G with
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2) ∪ {e = uv}, where u ∈ V (G1) and v ∈ V (G2) and is
denoted by G = G1 ⊙uv G2.

A caterpillar is a tree of order n ≥ 5 (notice that a tree of order less than 5 is a path or a star) such that
removing all the pendant vertices produces a path with at least two vertices. In particular, the caterpillar
T (n1,⋯, nr) is obtained from a path Pr and attaching the central vertex of the star Sni+1(1 ≤ i ≤ r) to
the ith vertex of the path Pr. In the other words,

T (n1, . . . , nr) ≅ Sn1+1 ⊙u1u2 Sn2+1 ⊙u2u3 ⋯⊙ur−1ur Snr+1,

where ui is the central vertex of the star Sni+1 for each (i = 1, . . . , r).
∗Speaker
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2 Main results

Let mi and ni (i = 1,2,3) be positive integers. As a first result in this talk, we investigate if G1 =
T (m1,m2,m3) and G2 = T (n1, n2, n3) are co-spectral, then they are isomorphic.

Let G = G1 ⊙uv G2 and G′1(G
′
2) be the induced subgraph of G1(G2) obtained by deleting the vertex

u(v) from G1(G2). The following result was proved in [2].

Theorem 2.1. [2, Theorem 2.2] ψG(λ) = ψG1(λ)ψG2(λ) − ψG′1
(λ)ψG′2

(λ).

It is well-known that ψSn+1(λ) = λn−1(λ2 − n). By considering this fact and Theorem 2.1, for r = 2 we
have:

ψT (m,n)(λ) = ψSm+1(λ)ψSn+1(λ) − λm+n

= λm−1(λ2 −m)λn−1(λ2 − n) − λm+n

= λm+n−2[λ4 − (m + n + 1)λ2 +mn],

and so we obtain the following theorem.

Theorem 2.2. A caterpillar T (m,n) is determined by its spectrum.

Now, Let r = 3 and G = T (m,n, p). Continuing the above method, we have:

ψG(λ) = ψTm,n(λ)ψSp+1(λ) − ψSm+1(λ)λnλp

= λm+n−2[λ4 − (m + n + 1)λ2 +mn]λp−1(λ2 − p) − λm−1(λ2 −m) − λnλp

= λm+n+p−3[λ6 − (m + n + p + 1)λ4 + (mn +mp + np + p)λ2 −mnp] − λm+n+p−1(λ2 −m)

= λm+n+p−3[λ6 − (m + n + p + 2)λ4 + (mn +mp + np +m + p)λ2 −mnp],

and so we obtain the following theorem.

Theorem 2.3. A caterpillar graph G = T (m,n, p) characterize by by its spectrum.

Now, as a second result, we prove that any caterpillar T (m,n, p) is determined by its Laplacian
eigenvalues. In [1], the Laplacian characteristic polynomial Sn+1 is equal

φ(L(Sn+1)) = µ(µ − n − 1)(µ − 1)n−1.

For, any v ∈ V (G), let Lv(G) be the principal submatrix of L(G) formed by deleting the row and
column corresponding to vertex v. The following result was proved in [3].

Theorem 2.4. [3, Lemma 8] Let G = G1 ⊙uv G2 be the graph, then

φ(L(G)) = φ(L(G1))φ(L(G2)) − φ(L(G1))φ(Lv(G2)) − φ(L(G2))φ(Lu(G1)).

Now, by using Theorem 2.4 for a caterpillar G = T (m,n), we have:

φ(L(G)) = φ(L(Sm+1))φ(L(Sn+1)) − φ(L(Sm+1))(µ − 1)n − φ(L(Sn+1))(µ − 1)m

= µ(µ −m − 1)(µ − 1)m−1µ(µ − n − 1)(µ − 1)n−1

−µ(µ −m − 1)(µ − 1)m−1(µ − 1)n − µ(µ − n − 1)(µ − 1)n−1(µ − 1)m
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= µ(µ − 1)m+n−2[µ3 − (m + n + 4)µ2 + (mn + 2m + 2n + 5)µ − (m + n + 2)],

and so we obtain the following theorem.

Theorem 2.5. A caterpillar T (m,n) is determined by its spectrum.

Finally, By using Theorems 2.4 and 2.5, the Laplacian characteristic polynomial of G = T (m,n, p) is
equal to

φ(L(G)) = φ(L(T (m,n)))φ(L(Sp+1)) − φ(L(T (m,n)))(µ − 1)p − φ(L(Sm+1))(µ − 1)n+p

= µ(µ − 1)m+n+p−3[µ5 − (m + n + p + 7)µ4

+(mn +mp + np + 5m + 4n + 5p + 18)µ3

−(mnp + 2mn + 3mp + 2np + 8m + 6n + 8p + 22)µ2

+(mn + 3mp + np + 5m + 4n + 5p + 13)µ −m − n − p − 3

and so we have the following:

Theorem 2.6. A caterpillar T (m,n, p) is determined by its spectrum.
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Abstract

Let G be a graph. The Chromatic symmetric function XG introduced by Stanley, is a sum of
monomial symmetric functions corresponding to proper colorings of G. Using a polynomial with two
variables it was proved that the degree sequence of every tree is determined by chromatic symmetric
function. In this talk, we provide a simple and short proof for this result. We also show that the degree
sequence of L(G) can be deduced from XG provided that G is a tree, where L(G) is the line graph of
G. Moreover, we prove that if G is triangle-free, then XG can be derived from XG.

Joint Work with: S. Akbari, A. Alavi, B. Samimi, E. Zahiri

1 Introduction

Let G be a simple graph with the vertex set V (G) and the edge set E(G). For v ∈ V (G), d(v) denotes
the degree of v. The complement G of G is the graph with the vertex set V (G) and two vertices are
adjacent in G if they are not adjacent in G. A matching M in G is a set of pairwise non-adjacent edges
and we denote the size of maximum matching of G by α′(G). We call G triangle-free if it has no cycle of
length 3 as a subgraph. Let P denote the positive integers. A proper vertex coloring of G is a function
κ ∶ V (G) → P such that κ(v) ≠ κ(w) whenever the vertices v,w are adjacent. Stanley in [3] defined the
chromatic symmetric function of G as

XG =XG(x1, x2, . . .) =∑
κ
∏

v∈V (G)
xκ(v),

the sum over all colorings κ, where x1, x2, . . . are countably infinitely many commuting indeterminates.
This definition is invariant under permutations of xi, so XG is a symmetric function, homogeneous of
degree n = ∣V (G)∣. It was proved that the degree sequences of a tree T can be recovered from its
chromatic symmetric function see [2]. Here, we provide a simple and short proof for this result.
The line graph of G, denoted as L(G), is the graph whose vertex set is E(G); two vertices of L(G) are
adjacent if the corresponding edges of G are incident. We show that the degree sequence of L(G) can
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be deduced from XG provided that G is a tree. Moreover, we prove that if G is triangle-free, XG can
be derived from XG. We call the sequence s1, s2, . . . , sn−1 the star sequence of G if and only if, for every
i = 2,3, . . . , n − 1, si is equal to the number of subgraphs of G that are isomorphic to K1,i.

2 Main results

Theorem 2.1. Let T be a tree. Then the degree sequence of T can be determined by XT .

Theorem 2.2. Let G be a simple graph of order n with no isolated vertex. It is possible to obtain the
degree sequence of G by having its star sequence.

Theorem 2.3. Suppose G is a triangle-free graph of order n. Then, the following holds:

χ(G) = n − α′(G)

Theorem 2.4. Suppose G is a triangle-free graph of order n. In that case, XG is computable.

Conjecture 2.5. The degree sequence of every bipartite graph can be determined by its chromatic sym-
metric function.

Conjecture 2.6. Every triangle-free graph has a unique chromatic symmetric function.
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Abstract

Assume set of 3 colors and to each vertex of a graph G we assign an arbitrary of these colors. If we
require that each vertex to set is assigned has in its closed neighborhood all 3 colors, then this is called
the generalized 3-rainbow dominating function of a graph G. The corresponding γg3r, which is the
minimum sum of numbers of assigned colors over all vertices of G, is called the g3-rainbow domination
number of G. In this paper we introduce this new concept and we present a linear algorithm for
determining a minimum generalized 3-rainbow dominating set of Pn, Km,n and GP (n,3).

1 Introduction

Domination and its variations in graphs have been extensively studied, c.[1]. For a graph G = (V,E), a
set S is a domination set if every vertex in V /S is adjacent to a vertex in S. The domination number
γ(G) is the minimum cardinality of a dominating set of G. We call a dominating set of cardinality γ(G)
is a γ(G)-set.
Let G be a graph and let f be a function that assigns to each vertex a set of colors chosen from the
set {1,2,3}; that is, f ∶ V (G) → P{(1,2,3)}. If for each vertex v ∈ V (G) such that f(v) = ∅ we have

⋃u∈V (G) f(u) = {1,2,3} , then f is called 3-rainbow domination function of G. The corresponding γ3r,
which is the minimum sum of numbers of assigned colors over all vertices of G, is called the 3-rainbow
domination number of G.

Definition 1.1. Let G be a graph and let f be a function that assigns to each vertex a set of colors
chosen from the set {1,2,3}; that is, f ∶ V (G) → P ({1,2,3}), if for each vertex v ∈ V (G) we have

⋃u∈N[v] f(u) = {1,2,3} , then f is called generalized of 3-rainbow dominating function (g3rdf) of G. The
weight, ω(f), of a function f is defined as ω(f) = ∑v∈V (G)∣f(v)∣. For a graph G, the minimum weight of
a g3rdf is called the generalized 3-rainbow dominating number of G, which we denote by a γg3r(G) .
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2 Main results

In this section, we state some of new results on the generalized 3-rainbow domination in graphs.

Lemma 2.1. we have,

(a) γg3r(kn) = 3
(b) γg3r(km,n) = 6
(c) γg3r(k1,n) = 3
(d) If i ∈ {2,3}, then γg3r(pi) = 3.
(e) If i, n ∈ N and 3n + 1 ≤ i ≤ 3(n + 1) then γg3r(pi) = 3n + 3.

Definition 2.2. Let n ≥ 3 and k be relatively prime natural numbers and k < n. The generalized Petersen
graph GP (n, k) is defined as follows. Let Cn, C

′
n be two disjoint cycles of length n. Let the vertices of

Cn be u1, ..., un and edges uiui+1 for i = 1, ..., n − 1 and unu1. Let the vertices of C ′n be v1, ..., vn and
edges vivi+k for i = 1, ..., n, the sum i + k being taken modulo n (throughout this section). The graph
GP (n, k) is obtained from the union of Cn and C ′n by adding the edges uivi for i = 1, ..., n. Its obvious
that GP (n, k) = GP (n,n − k). The graph GP (5,2) or GP (5,3) is the well-known Petersen graph.

Theorem 2.3. For graphs GP(n,3) that n ≥ 5 and n and 3 be relatively prime numbers,

γg3r ≤ {
6[n

3
] + 3, if n ≡ 1(mod3);

6 ⌈n
3
⌉ , if n ≡ 2(mod3); (1)

Proof. We use the following partition of V(GP(n,3)):
If n ≡ 1, (mod3), we use the following algorithm and define the function f on GP (n,3).
step1) In the outer circle of the graph, the vertices of u3k+1 that k = 0,1,2, ..., are labeled by {1,2,3} and
the rest of the vertices are labeled of ∅. Then γg3r of the outer circle of the graph is less than or equal to
3[n

3
] + 3

step2) The vertices v3k+2 that k = 0,2,4, ... are labeled with {1,2,3}. Then γg3r of these vertices is less
than or equal to 3

2
[n
3
]. The vertices v3k that k = 1,3,5, .. are labeled by {1,2,3}, then γg3r of these vertices

is less than or equal to 3
2
[n
3
], and the rest of the vertices are labeled of ∅. Then γg3r of the inner round

of the graph is less than or equal to 3[n
3
].

Therefore γg3rGP (n,3) ≤ 3[n3 ] + 3 +
3
2
[n
3
] + 3

2
[n
3
] = 6[n

3
] + 3.

If n ≡ 2, (mod3), we use the following algorithm and define the function f on GP (n,3).
step1) In the outer circle of the graph the vertices u3k+1 that k = 0,1,2..., are labeled by {1,2,3} and the
rest of the vertices are labeled with ∅. Then γg3r the outer circle of the graph is less than or equal to
6 ⌈n

3
⌉

step2) The vertices v3k+2 that k = 0,2,4, ... are labeled by {1,2,3}, then γg3r for these vertices is less than
or equal to 3

2
⌈n
3
⌉. The vertices of v3k that k = 1,3,5, ... are labeled by {1,2,3} and γg3r, of these vertices

is less than ir equal to 3
2
⌈n
3
⌉ .

The other vertices are labeled by ∅. Then γg3r of the inner round of the graph is less than or equal to
3 ⌈n

3
⌉.

Therefore γg3r(GP (n,3)) ≤ 3 ⌈n3 ⌉ +
3
2
⌈n
3
⌉ + 3

2
[n
3
] = 6 ⌈n

3
⌉.
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Abstract

Spikes form an important class of 3-connected matroids. For an integer r ≥ 3, there is a unique
binary spike of rank r denoted by Zr. By relaxing a circuit-hyperplane of Zr, one obtains another spike
and repeating this procedure produces other non-binary spikes. In this paper, we pose a conjecture
which would characterize the complete set of the class of r-spikes by applying relaxing operation to all
GF (p)-representable r-spikes, for every prime field GF (p).

1 Introduction and preliminaries

Spikes play an important role in matroid theory. They have been used as a counterexample for many
conjectures. So one needs to find the structure of all F-representable spikes with rank r (It is denoted
by r-spike and r ≥ 3) in terms of matrix representation and, in particular, circuit-hyperplanes. Wu [7]
evaluated the number of GF (p)-representable r-spikes, for p in {3,4,5,7}. He also found the asymptotic
value of the number of distinct r-spikes that are representable over GF (p) when p is prime. Moreover,
Wu [6] showed that a GF (p)-representable r-spike M is only representable over fields with characteristic
p provided that r ≥ 2p − 1 and M is uniquely representable over GF (p). In our first paper about spikes
[5], we showed that all binary spikes and many non-binary spikes of each rank can be derived from the
Fano matroid by a sequence of es-splitting operations [1, 2] and circuit-hyperplane relaxations.

Let E = {x1, x2, ..., xr, y1, y2, ..., yr, t} for some r ≥ 3. Let C1 = {{t, xi, yi} ∶ 1 ≤ i ≤ r} and C2 =
{{xi, yi, xj , yj ∶ 1 ≤ i < j ≤ r}. The set of circuits of every spike on E includes C1 ∪C2. Let C3 be a, possibly
empty, subset of {{z1, z2, ..., zr} ∶ zi is in {xi, yi} for all i} such that no two members of C3 have more than
r−2 common elements. Finally, let C4 be the collection of all (r+1)-element subsets of E that contain no
member of C1 ∪C2 ∪C3. There is a rank-r matroid M on E whose collection C of circuits is C1 ∪C2 ∪C3 ∪C4
[4] and the matroid M is called an r-spike with tip t and legs L1, L2, ..., Lr where Li = {t, xi, yi} for all i.
In an arbitrary spike M , each circuit in C3 is also a hyperplane of M and when such a circuit-hyperplane
is relaxed, we obtain another spike. If C3 is empty, the corresponding spike is called the free r-spike with
tip t.

For r ≥ 3, let [Ir ∣Jr − Ir ∣1] be an r × (2r + 1) matrix over GF (2) whose columns are labeled, in order,
x1, x2, ..., xr, y1, y2, ..., yr, t where Jr and 1 are the r × r and r × 1 matrices of all ones, respectively. This
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matrix represents the unique binary r-spike. Moreover, if we interchange GF (2) and GF (p), for p prime,
then we obtain a matrix representation for one of GF (p)-representable r-spikes. But we cannot apply the
es-splitting operation on such r-spikes to construct other (r+1)-spikes since this operation is only defined
for binary matroids.

Let E be the ground set of aGF (p)-representable spikeM . We wish to determine what subsets of E are
members of C3 or C4 and how we can obtain a matrix representingM . This leads to computing the number
of circuit-hyperplanes of M and producing many spikes from M which are not GF (p)-representable, by
relaxing operation.

Let F be a field and α1, α2, ..., αr be non-zero elements of F. Let 1 be the r × 1 matrix of all ones, and
let

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1 y2 y3 . . . yr−1 yr
1 + α1

−1 1 1 . . . 1 1
1 1 + α2

−1 1 . . . 1 1
1 1 1 + α3

−1 . . . 1 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 1 . . . 1 + αr−1

−1 1
1 1 1 . . . 1 1 + αr

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1)

Geelen, Gerards, and Whittle (2002) [3] described the following key result for the representability of
spikes. Note that all circuit-hyperplanes of a r-spike are r-element subsets of form

{{z1, z2, ..., zr} ∶ zi is in {xi, yi} for all i}.

So by following Proposition one can find all circuit-hyperplanes of a given r-spike.

Proposition 1.1. Suppose that r ≥ 3 and F is a field. Let M be an F-representable r-spike with legs
{t, x1, y1},{t, x2, y2}, ...,{t, xr, yr} such that {x1, x2, ..., xr} is independent. Then every F-representation
of M is projectively equivalent to a matrix of the form [Ir ∣Ar ∣1] whose columns are labeled, in order,
x1, x2, ..., xr, y1, y2, ..., yr, t, where Ar is as in (1). Moreover, for K ⊆ {1,2, ..., r}, the set {xk ∶ k ∉K}∪{yk ∶
k ∈K} is a circuit of M if and only if ∑k∈K αk = −1.

2 A conjecture about spikes

Now we propose a conjecture and a problem that may enable us to prove the conjecture. We know that
when a circuithyperplane of a spike is relaxed, we obtain another spike, and repeating this procedure until
all of the circuithyperplanes of a spike have been relaxed will produce the free spike. For r ≥ 3 and some
prime p, let S be the class of all GF (p)-representable r-spikes such that no two members of it are not
obtained from each other by a sequence of the relaxing operations. In the following conjecture, we claim
that all members of the class of all r-spikes can be constructed from all members of S.

Conjecture 2.1. Let Sr be the class of all r-spikes. Then, by applying a sequence of relaxing operations
on circuit-hyperplanes of each member of S until we arrive at the free r-spike, we can find all members of
Sr − S.

As an example to illustrate this guess, let r = 3. Then S = {F7, P7} and in the figure below, you can
see the diagram of the geometric representations of the only six 3-spikes that are obtained by sequences
of relaxing operations with starting from the binary 3-spike F7 and ternary 3-spike P7.
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Figure 1: Geometric Representations of the only Six 3-Spikes.

Now we think that this conjecture can be proved if we can solve the following problem about relaxing
operation.

Problem 2.2. For p prime, let M be a GF (p)-representable matroid and let H be a circuit-hyperplane
of M . Let N be a matroid that is obtained from M by relaxing H. For which filed F the matroid N is
F-representable?
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Abstract
The concept of gyrogroups is a natural generalization of groups and vector spaces. A gyrogroup

satisfies the group condition, in addition to that, for any pair (a, b) in this structure, there exists an
automorphism gyr[a, b] with this property that fulfills left associativity and left loop property. The
study in this article is motivated by generalizing the notion of commuting graph of groups by gyrogroups.
For a gyrogroup G, the gyr-commuting graph of G, denoted by GC(G), is the graph with vertex set G
and two distinct vertices x and y are joined by an edge if and only if xy = gyr[x, y](yx). In this paper,
we study some property of gyr-commuting graphs.

1 Introduction

The concept of gyrogroups, which are best motivated by the algebra of Möbius transformations of the
complex open unit disc, is a natural generalization of groups and vector spaces. The resulting notions of
gyrogroups and gyrovector spaces preserve the flavor of their classical counterparts and lay a fruitful bridge
between non-associative algebra and hyperbolic geometry. The evolution fromMöbius to gyrogroups began
after the discovery that Einstein velocity addition law encodes a rich structure that is a gyrocommutative
gyrogroup and a gyrovector space, in [6]. This concept is still being explored today, more than 150 years
after Möbius first studied the transformations that now bear his name. Let G be a group. The commuting
graph, denoted by C(G), is a simple graph with vertex set G and two vertices are adjacent if and only if
they commute with each other. This graph was introduced by Brauer and Fowler in [3]. More studies are
done in [1], [2], [4] and [5]. In this study, we introduce a structure that is a generalization of commuting
graphs. We call these structures gyr-commuting graphs and several properties of this structure have
been examined. Some classes of gyrosemigroups and non-gyrosemigroups of any order are introduced.
Moreover, we characterize all gyrosemigroups of order two up to gyroisomorphism. In the last section,
the gyrosemigroups with identity and zero are studied.

2 Main results

In this section, the commuting graph of a gyrogroup is introduced and investigated. It is shown that this
notion generalized the concept of commuting graph of a group. Moreover, some properties of the graph
are stated. First we recall the definition of a gyrogroup.
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Definition 2.1. (Gyrogroup) (A groupoid G with a binary operation ⊕ is called a gyrogroup if its binary
operation satisfies the following axioms:

(1) For every a, b ∈ G, there is an gyr[a, b] ∈ Aut(G,⊕) such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c),

for every c ∈ G.
(2) For every a, b ∈ G, gyr[a⊕ b, b] = gyr[a, b].
(3) There exists an element 0 ∈ G, such that for all x ∈ G, 0⊕ x = x.
(4) For each a ∈ G, there exists b ∈ G such that b⊕ a = 0.

Now, we state a lemma is needed to show the commuting graph of a gyrogroup is well-defined as a
simple graph.

Lemma 2.2. Let G be a gyrogroup. Then x⊕ y = gyr[x, y](y ⊕ x) if and only if y ⊕ x = gyr[y, x](x⊕ y).

Following the main definition of this section is presented.

Definition 2.3. Let G be a gyrogroup, the gyr-commuting graph of G, denoted by GC(G), is a simple
graph whose vertices are all elements of G and two distinct vertices x and y are adjacent if and only if
x⊕ y = gyr[x, y](y ⊕ x).

Theorem 2.4. For a group G, the commutating graph of G is isomorphic to the gyr-commuting graph of
(G,gyr) if and only if gyr[a, b] = identity for every a, b ∈ G.

The last theorem shows that gyr-commuting graph is a generalization of commutating graph of groups.
Now, we consider the vertices of GC(G) which are adjacent to all other vertices.

Definition 2.5. Let G be a gyrogroup. Define gyr-center of G as follows,

GC(G) = {a ∈ G ∣ a⊕ b = gyr[a, b]b⊕ a for all b ∈ G }.

Lemma 2.6. Let G be a gyrogroup. Then GC(G) ≥ 1.

Corollary 2.7. For a group G, the gyr-commuting graph of G is a connected graph with diameter at most
2.

Theorem 2.8. For a gyrogroup G, every a ∈ G is adjacent to a−1 in GC(G).

Corollary 2.9. Let G be a gyrogroup with at least 3 elements. Then the girth of GC(G) is equal to 3.

Theorem 2.10. Let G be a gyrogroup. Then the gyr-commuting graph of G is a complete graph if and
only if GC(G) = G.

Corollary 2.11. For a abelian group G, if gyr[a, b] = identity then GC(G) is a complete graph.

In the following, the relation between the edges of GC(G) and C(G) are studied. There are some
examples of groups and gyrators such that a and b are adjacent in C(G) but not in GC(G) Or vice versa.
Clearly, ab is an edge of C(G) and GC(G) if and only if b ⊕ a is a fixed point of gyr[a, b]. In the next
theorem more result for gyr[a, b] is obtained in this case.

Theorem 2.12. Let G be a gyrogroup. If a and b are adjacent in the both graphs C(G) and GC(G), then
gyr[a, b] is an automorphism of order 2.
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Abstract

We propose and investigate the concept of k-coalitions in graphs, where k ≥ 1 is an integer. A
k-coalition refers to a pair of disjoint vertex sets that jointly constitute a k-dominating set of the graph,
meaning that every vertex not in the set has at least k neighbors in the set. We define a k-coalition
partition of a graph as a vertex partition in which each set is either a k-dominating set with exactly k
members or forms a k-coalition with another set in the partition. The maximum number of sets in a
k-coalition partition is called the k-coalition number of the graph represented by Ck(G). We present
fundamental findings regarding the properties of k-coalitions and their connections with other graph
parameters, providing insights into the structural and optimization aspects of graphs with respect to
the k-coalition framework.

1 Introduction

Consider a graph G with vertex set V = V (G), where we only consider graphs that are simple and
undirected. A coalition in G consists of two disjoint sets V1 and V2 of vertices, such that neither V1 nor V2
is a dominating set, but the union V1 ∪V2 is a dominating set of G. A coalition partition of G, c-partition
of G for short, is a partition {V1, . . . , Vk} of V (G) such that for every i ∈ [k], either the set Vi consists
of a single dominating vertex of G, or Vi forms a coalition with some other part Vj . Coalition partitions
were introduced in 2020 in [6] and already extensively researched in [1, 2].

Two vertices are said to be neighbors if they are adjacent. For an integer k ≥ 1, a k-dominating set of
G is a set S of vertices such that each vertex in V /S is adjacent to at least k vertices in S. The smallest
possible size of a k-dominating set of G is referred to as the k-domination number of G, denoted by γk(G).
The interested reader may refer to [4, 5] for a comprehensive overview of dominating sets in graphs.

The concept of a coalition in graphs was introduced by Haynes et al. in [3]. A coalition in a graph G
is a pair of sets S1 and S2 that are not dominating sets of G, but their union S1 ∪ S2 is a dominating set
of G. Such a pair forms a coalition. A vertex partition X = {S1, . . . , Sk} of the vertex set V (G) is called
a coalition partition of G if every set Si ∈ X is either a dominating set of G with cardinality ∣Si∣ = 1, or
not a dominating set but forms a coalition with some Sj ∈ X. Haynes et al. also introduced the coalition
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number of a graph, which is the maximum number of sets in a coalition partition. This concept has been
widely studied in graph theory and has significant applications in various areas, such as wireless sensor
networks, social network analysis, and distributed systems.

Motivated by the concept of coalitions in graphs, we propose and investigate the notion of k-coalitions
in graphs in this paper. Two sets U1 ⊆ V and U2 ⊆ V form a k-coalition if neither is a k-dominating set,
but their union is a k-dominating set. We define a k-coalition partition Θ = {U1, . . . , Ur} of a graph as
a vertex partition in which each set of Θ is either a k-dominating set with exactly k members or forms
a k-coalition with another set in the partition. We call the k-coalition number of a graph the maximum
number of sets in a k-coalition partition denoted by Ck(G).

2 Main results

In this section, we state some results.

Theorem 2.1. For any integer k ≥ 1 and any graph G with δ(G) ≥ k there is a k-coalition partition.

The following theorems gives the 2-coalition number of path and cycle.

Theorem 2.2. The 2-coalition number of the path Pn is

C2(Pn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 n = 1,2,
2 n = 3,
3 n ≥ 4.

Theorem 2.3. The 2-coalition number of the cycle Cn is

C2(Cn) =
⎧⎪⎪⎨⎪⎪⎩

4 n is even,

3 n is odd.
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Abstract

In the paper [R.C. Brigham, et. al. Bicritical domination, Discrete Math, 305 (2005) 18-32] the
problem; is it true that every connected bicritical graph has a minimum dominating set containing
any two specified vertices of the graphs? We give a class of graphs that disprove this problem and
furthermore we obtain the domination numbers and the diameters of the graphs of this class. This
class of graphs has the property: γ(G) − diam(G) → ∞ when ∣V (G)∣ = n → ∞. Also for the bicritical
graphs of this class i(G) = γ(G).

1 Introduction

Let G = (V,E) be a graph. A set S ⊂ V is a dominating set if every vertex in V is either in S or is adjacent
to a vertex in S, that is V = ⋃s∈SN[s]. The domination number γ(G) is the minimum cardinality of a
dominating set of G and a dominating set of minimum cardinality is called a γ(G)−set. A dominating set
S is called an independent dominating set of G if there are no two vertices of S are adjacent. The minimum
cardinality among the independent dominating sets of G is the independent domination number i(G).
We denote the distance between two vertices x and y in G by dG(x, y). Note that removing a vertex can
increase the domination number by more than one, but can decrease it by at most one. The connectivity
of G, written κ(G), is the minimum size of a vertex set S such that G − S is disconnected or has only
one vertex. A graph G is k-connected if it’s connectivity is at least k. A graph is k-edge-connected if
every disconnecting set has at least k edges. The edge-connectivity of G, written λ(G), is the minimum
size of a disconnecting set, for more, see [10]. The circulant graph Cn+1⟨1,4⟩ is the graph with vertex set
{v0, v1, . . . , vn} and edge set {vivi+j (mod n + 1)∣ i ∈ {0,1, . . . , n}} and j ∈ {1,4}. For example see figure
1, C12⟨1,4⟩.

[1] For a bicritical graph G and x, y ∈ V (G),

γ(G) − 2 ≤ γ(G − {x, y}) ≤ γ(G) − 1.
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Figure 1:

2 Results

We study the domination number, diameter of Cn+1⟨1,4⟩ and verify their relation.

Lemma 2.1. γ(Cn+1⟨1,4⟩) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ⌊n
9
⌋ + 3 n ≡ 7 (mod 9)

2 ⌊n
9
⌋ + 1 n ≡ 1 or 0 (mod 9)

3 n = 12

2 ⌊n
9
⌋ + 2 o.w.

Theorem 2.2. γ(Cn+1⟨1,4⟩) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ⌊n
9
⌋ + 3 n ≡ 7 (mod 9)

2 ⌊n
9
⌋ + 1 n ≡ 1 or 0 (mod 9)

3 n = 12

2 ⌊n
9
⌋ + 2 o.w.

Theorem 2.3. The graph Cn+1⟨1,4⟩ is bicritical for n + 1 = 9k + 3, n + 1 = 9k + 4 or n + 1 = 9k + 8 where
k ≥ 1.

Theorem 2.4. κ(Cn+1⟨1,4⟩) = 4, where n ≥ 8.

Theorem 2.5. κ′(Cn+1⟨1,4⟩) = 4, where n ≥ 8.

Theorem 2.6. In (Cn+1⟨1,4⟩) for n ≥ 7, diam < γ.

Corollary 2.7. In open problem 6 of [1] we have: Is it true if G is a connected bicritical graph, then
γ(G) = i(G), where i(G) is the independent domination number? We found graphs are bicritical such as
(Cn+1⟨1,4⟩) for n + 1 = 9k + 3,9k + 4,9k + 8 that these graphs have the property; γ(G) = i(G).

Now we reject the problem of [1]

Problem 2.8.

Is it true that every connected bicritical graph has a minimum dominating set containing any two
specified vertices of the graphs?
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Figure 2: (C18⟨1,4⟩)

References

[1] R. C. Brigham, T. W. Haynes, M. A. Henning, D. F. Rall, Bicritical domination, Discrete mathematics,
305 (2005) 18-32.

[2] O. Favaron, D. Summer, E. Wojcicka, The diameter of domination-critical graphs, J. Graph Theory,
18 (1994) 723-724.

[3] J. Fulman, D. Hasson, G. Magillivary, Vertex domination-critical graphs, Networks, 25 (1995) 41-43.

[4] T. W. Haynes, S. T. Hedetniem, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker,
New York, 1998.

[5] D. A. Mojdeh and N. J. Rad, On the open problem of total domination critical graphs, Exposition
Math., (Article in Press).

[6] D. A. Mojdeh and N. J. Rad, On the total domination critical graphs, Electronic Notes in Discrete
Mathematics, 24 (2006) 89-92.

[7] J. B. Phillips, T. W. Haynes, P. J. Slater, A generalization of domination critical graphs, Utilitas
Math., 58 (2000) 129-144.

[8] D. P. Sumner, Critical concepts in domination, Discrete Math. 86 (1990) 33-46.

[9] D. P. Sumner and E. Wojcicka, Graphs critical with respect to the domination number, in: T.W,
Haynes, S.T. Hedentiem, P. J. Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Dekker,
New York, 1998 (Chapter 16).

[10] D. B. West, Introduction to graph theory (Second Edition). Prentice Hall USA 2001.

115



Breaking Symmetry in Graphs by Resolving Sets

Meysam Korivand∗, Nasrin Soltankhah

Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran

E-mail: mekorivand@gmail.com or m.korivand@alzahra.ac.ir,

soltan@alzahra.ac.ir

Abstract

For a given graph G, let dim(G) and D(G) represent its metric dimension and distinguishing
number, respectively. Here, we investigate a connection between dim(G) and D(G). We show that
in connected graphs, every resolving set breaks graph symmetry. Precisely, if G is a connected graph
with a resolving set S = {v1, v2, . . . , vn}, then {{v1},{v2}, . . . ,{vn}, V (G) ∖ S} is a partition of V (G)
into a distinguishing coloring, and as a consequence D(G) ≤ dim(G)+1. Using this connection, certain
graphs with large distinguishing number are identified.

1 Introduction

In 1977, Babai proposed a concept that today inspires many methods for distinguishing elements of graphs
by automorphism. After Albertson and Collins [1] studied this concept in detail, it was widely considered
in the name of asymmetric coloring (or distinguishing labelling). A distinguishing coloring of a graph
is a vertex coloring such that there is no color preserving non-trivial automorphism of the graph. The
minimum color required for a distinguishing coloring of a graph G is indicated by D(G) and is called
distinguishing number of G.

For a connected graph G, a subset S ⊆ V (G) is a resolving set if for any two vertices g1 and g2 of G,
there exists vertex s ∈ S such that d(g1, s) ≠ d(g2, s). The smallest size that can be taken by a resolving set
S is called the metric dimension and is denoted by dim(G). The concept of resolving sets was introduced
independently and simultaneously by Slater [4] and Harary & Melter [3] in 1975-6.

These two concepts have gone their research paths for years without paying attention to each other.
Here we show that there is a connection between them. In fact, we will show that solving the metric
dimension problem breaks the symmetry in graphs. We construct graphs G such that D(G) = n and
dim(G) =m for all values of n and m, where 1 ≤ n <m. Furthermore, we have characterized all graphs G
of order n with D(G) ∈ {n − 1, n − 2}. For any graph G, let Gc = G if G is connected, and Gc = G if G is
disconnected. Let G∗ denote the twin graph obtained from G by contracting any maximal set of vertices
with the same open or close neighborhood into a vertex. Let F be the set of all graphs except graphs G
with the property that dim(Gc) = ∣V (G)∣ − 4, diam(Gc) ∈ {2,3} and 5 ≤ ∣V (G∗c)∣ ≤ 9. We characterize all
graphs G ∈ F of order n with the property that D(G) = n − 3.
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Let (v1, v2, . . . , vn) denoted the path Pn on the vertices v1, v2, . . . , vn. Let C ′5 denote the C5 with a
chord. All definitions and symbols used and undefined are standard and can be found in [2].

2 Main results

In this section, we show that in connected graphs, the distinguishing number is bounded by the metric
dimension plus one. In addition, we characterize some graphs with large distinguishing number.

Theorem 2.1. Let G be a connected graph. Then D(G) ≤ dim(G) + 1.

Note that this bound is sharp. For instance, let G = Pn for an integer n ≥ 2. Hence, D(G) =
dim(G) + 1 = 2.

Corollary 2.2. Let G be a connected graph. For any resolving set S = {v1, v2, . . . , vn} of G, and
{{v1},{v2}, . . . ,{vn}, V (G) ∖ S} is a partition of V (G) into a distinguishing coloring.

In the next theorem, we construct graphs G such that D(G) = n and dim(G) = m for all values of n
and m, where 1 ≤ n <m.

Theorem 2.3. For every 1 ≤ n < m, there exists a graph G having distinguishing number n and metric
dimension m.

In the next two theorems, we have characterized all graphs G of order n with D(G) ∈ {n − 1, n − 2}.

Theorem 2.4. Let G be a graph with order n. Then D(G) = n−1 if and only if G is one of the following:

(1) C4

(2) Kt,1, t ≥ 2
(3) 2K2

(4) Kt ∪K1, t ≥ 2

Theorem 2.5. Let G be a graph with order n ≥ 4. Then D(G) = n − 2 if and only if G is one of the
following:

(1) C5

(3) K1,2,2

(5) K3,3

(7) Kt,2, t ≥ 3

(9) K2 +Kt, t ≥ 2

(11) Kt +K2, t ≥ 2

(13) K1 + (Kt ∪K1), t ≥ 2

(2) P4

(4) 2K2 ∪K1

(6) 2K3

(8) Kt ∪K2, t ≥ 3

(10) Kt ∪ 2K1, t ≥ 2

(12) Kt ∪K2, t ≥ 2

(14) Kt,1 ∪K1, t ≥ 2

Let G be a graph of order n with vertices v1, v2, . . . , vn, and assume that H1,H2, . . . ,Hn are complete
or empty graphs. The blow-up of G, denoted by G[H1,H2, . . . ,Hn], is the graph obtained as follows:
(1) every vertex vi of G is replaced by Hi for every i with 1 ≤ i ≤ n, (2) for any two vertices vi and
vj if vivj ∈ E(G), then for every u ∈ V (Hi) and every v ∈ V (Hj), uv is an edge of G[H1,H2, . . . ,Hn].
Specifically, in the path (v1, v2, . . . , vn), Pn[H1, . . . ,Hn] = (H1,H2, . . . ,Hn).

Theorem 2.6. Let G be a graph of order n ≥ 5. Let F be the set of all graphs except graphs G with the
property that dim(Gc) = n − 4, diam(Gc) ∈ {2,3} and 5 ≤ ∣V (G∗c)∣ ≤ 9. If G ∈ F , then D(G) = n − 3 if and
only if G is one of the following:
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(1) P5

(3) K4,4

(5) K3 +Kt, t ≥ 3

(7) K2 + (Kt ∪K1), t ≥ 2

(9) Kt,3, t ≥ 4

(11) Kt +K3, t ≥ 3

(13) Kt + (K2 ∪K1), t ≥ 2

(15) K1,2,t, t ≥ 3

(17) K2 +K2,2

(19) K1,3,3

(21) K2,2,2

(23) K2 + (K1 ∪Kt), t ≥ 2

(25) K2 + 2K2

(27) Kt + (K1 ∪K2), t ≥ 2

(29) K2 + 2K2

(31) K1 + (K1 ∪K1,t), t ≥ 2

(33) K1 + P4

(35) K1 + (K1 ∪ 2K2)

(37) K1 + (K1 ∪K2,2)

(39) P4[K1,Kt,K1,K1], t ≥ 2

(41) P4[K1,Kt,K1,K1], t ≥ 2

(2) C
′

5

(4) 2K4

(6) K3 ∪Kt, t ≥ 3

(8) K2 ∪Kt,1, t ≥ 2

(10) Kt ∪K3, t ≥ 4

(12) Kt ∪K3, t ≥ 3

(14) Kt ∪K2,1, t ≥ 2

(16) K1 ∪K2 ∪Kt, t ≥ 3

(18) K2 ∪ 2K2

(20) 2K3 ∪K1

(22) 3K2

(24) K2 ∪Kt,1, t ≥ 2

(26) K2 ∪K2,2

(28) Kt ∪K2,1, t ≥ 2

(30) 2K1 ∪K2,2

(32) K1 ∪ (K1 + (Kt ∪K1)), t ≥ 2

(34) K1 ∪ P4

(36) K1 ∪ (K1 +K2,2)

(38) K1 ∪ (K1 + 2K2)

(40) P4[Kt,K1,K1,K1], t ≥ 2

(42) P4[Kt,K1,K1,K1], t ≥ 2
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Abstract

Fullerene graph is a connected plane cubic graph with only pentagonal and hexagonal faces, which
is the molecular graph of carbon fullerene. A perfect star packing in a graph G is a spanning subgraph
of G whose every component is isomorphic to the star graph K1,3. Many fullerene graphs arise from
smaller fullerene graphs by applying some transformations. An efficient dominating set of graph G is a
vertex subset D of G such that each vertex of G not in D is adjacent to exactly one vertex from D and
any two vertices of D are not adjacent in G. Clearly, a perfect star packing in a fullerene graph G on n

vertices will exist if and only if G has an efficient dominating set of cardinality
n

4
.

1 Introduction

A fullerene is a spherically shaped molecule consisting of carbon atoms in which every carbon ring forms a
pentagon or a hexagon A fullerene graph is a planar, cubic, 3-connected graph with only pentagonal and
hexagonal faces. An important result derived straightforward from the Euler relation, ∣V ∣ + ∣F ∣ = ∣E∣ + 2,
where ∣V ∣ is the number of vertices, ∣F ∣ is the number of faces and ∣E∣ is the number of edges of G, ensures
that every fullerene graph has exactly 12 pentagonal faces, A perfect star packing of a fullerene graph G
is of type P0 if all the centers of stars lie on hexagons of G Otherwise it is of type P1. Every atom of a
fullerene has bonds with exactly three neighboring atoms. dominating set of a graph G is a set of vertices
D such that each verte in V (G)−D is adjacent to a vertex in D. Moreover, if each vertex in V (G)−D is
adjacent to exactly one vertex in D and D is an independent vertex set, then D is called efficient.

2 Main results

The problem of determining the existence of efficient dominating sets in some families of graphs was first
investigated by Biggs [2] and Kratochvil [3] Later Livingston and Stout [4] studied the existence and
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construction of efficient dominating sets in families of graphs arising from th interconnection networks of
parallel computers. The problem of finding an efficient dominating set, however, is algorithmically hard
[5].

Theorem 2.1 ([8]). Let S be a perfect star packing of fullerene graph G. Then G−C(S) has even number
of odd cycles.

Proof. Proof. If G −C(S) does not have a non-facial cycle of G, then any pentagon of G does not have
a vertex in C(S). So all the vertices on pentagons are leaves in S. It implies that G −C(S) has exactly
twelve odd cycles, each of which is a pentagon. Next, we suppose that G−C(S) has a non-facial cycle of
G, denoted by C.
Claim 1. If C is an even cycle, then G has even number of pentagons which share edges with C. If C is
an odd cycle, then G has odd number of pentagons which share edges with C. the number of pentagons
which share edges with C is equal to n2. n2 and the length of C have the same parity. So the Claim holds.
Claim 2. Any pentagon of G shares edges with at most one non-facial cycle in G − C(S). Let P be a
pentagon of G. P has at most one vertex which is the center of a star in S. If P does not have a vertex in
C(S), then P is a cycle in G−C(S). each component of G−C(S) is an induced cycle of G. So P does not
share edges with any non-facial cycle in G −C(S). If P has a vertex x ∈ C(S), then P − x is a subgraph
of a non-facial cycle in G −C(S). So P shares edges with exactly one non-facial cycle in G −C(S).
Now, we consider the following two cases for the non-facial cycles in GC(S).
Case 1. G−C(S) does not have a non-facial cycle of odd length. Then any non-facial cycle C in G−C(S)
is of even length. By the above Claims, there are even number of pentagons in G such that they share
edges with C. Since G has exactly twelve pentagons, there are even number of pentagons in G each of
which does not share edges with non-facial cycles in G−C(S). These pentagons must be cycles in G−C(S)
Hence G −C(S) has even number of odd cycles.
Case 2. G−C(S) has some non-facial cycle of odd length. Suppose that G−C(S) has exactly k non-facial
cycles of odd length. We denote the number of pentagons in G each of which does not share edges with
non-facial cycles in G −C(S) by p. These p pentagons must be cycles in GC(S). So G −C(S) has p + k
odd length cycles. Next, we show that p and k have the same parity. If p is odd, then G has odd number
of pentagons each of which share edges with exactly one non-facial cycle in G−C(S) since G has exactly
12 pentagons. By the above Claims, for each even length non-facial cycle in G−C(S), G has even number
of pentagons which share edges with the cycle, and for each odd length non-facial cycle in G −C(S), G
has odd number of pentagons which share edges with the cycle. So G−C(S) has odd number of non-facial
cycles of odd length. This means that k is odd. For p being even, we can similarly show that k is even.
So k and p have the same parity and p + k is even.

Theorem 2.2. If fullerene graph G has a perfect star packing, then the order of G is divisible by 8.

Proof. Proof. We suppose that S is a perfect star packing of G and Co and Ce are the collections of all
the odd cycles and even cycles in G −C(S), respectively. Then we have the following equation.

∣V (G)∣ = ∣C(S)∣ + ∑
C∈Co
∣C ∣ + ∑

C∈Ce
∣C ∣

= ∣V (G)∣
4

+ ∑
C∈Co
∣C ∣ + even

(1)

By Theorem 2.1 Co has even number of elements. Combine the above equation, we know that
∣V (G)∣

4
× 3

is even. Hence
∣V (G)∣

4
is even, that is, the order of G is divisible by 8.

Theorem 2.3. The order of a fullerene graph with an efficient dominating set is 8n.

Proof. From the definitions of the efficient dominating set and the perfect star packing of a fullerene graph
G, it is a natural result, a fullerene graph G with n vertices has a perfect star packing if and only if G has

an efficient dominating set of cardinality
n

4
so with the theorem 2.2, we get that The order of a fullerene

graph with an efficient dominating set is 8n.
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Clearly, for a fullerene graph G with a perfect star packing, its order must be divisible by 4. So the
order of G is 8k or 8k + 4 for some positive integer k. So the order of G can not be 8k + 4. Theorem 2.2
is equivalent to the following corollary.

Corollary 2.4. A fullerene graph with order 8n + 4 does not have a perfect star packing.
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Abstract

The enhanced power graph Pe(G) of a group G is a graph with vertex set G, where two vertices
u and v are adjacent if and only if < u, v > is cyclic. In this paper, we raise and study the following
question: For which natural numbers n every two groups of order n with isomorphic enhanced power
graphs are isomorphic?

1 Introduction

The concept of a power graph was introduced in the context of semigroup theory by Kelarev and Quinn
[1]. Let G be a finite group, the undirected power graph P (G) is the undirected graph with vertex set
G, where two vertices a, b ∈ G are adjacent if and only if a ≠ b and am = b or bm = a for some positive

integer m. Likewise, the directed power graph
Ð→
P (G) is the directed graph with vertex set G, where for

two vertices u, v ∈ G there is an arc from a to b if and only if a ≠ b and b = am for some positive integer
m. In this paper we study the same power graphs and enhanced power graphs. Clearly G1 ≅ G2 implies
P (G1) ≅ P (G2). Does the converse hold? The converse has been considered and it’s is false for finite
groups in general. For example, if p is an odd prime and m > 2, besides the elementary abelian group H
of order pm, there are non-abelian groups G of order pm and exponent p, so H and G are non-isomorphic
but have isomorphic power graphs. On the other hand, if both G and H are abelian then P (G) ≅ P (H)
implies G ≅H.

In [3], the following question was investigated and the set of all such numbers was denoted by S:
For which natural numbers n every two groups of order n with the same spectrum are isomorphic?
In [2], we raise another question along the same lines:
For which natural numbers n, every two groups of order n with isomorphic power graphs are isomor-

phic?
Let us denote the set of all such numbers by S̄. Since two finite groups with isomorphic power graphs

have the same spectrum, it is easy to see that S ⊆ S̄.
In this paper we pay attention to the same question for enhanced power graphs.

Question: For which natural numbers n, every two groups of order n with isomorphic enhanced power
graphs are isomorphic?

Let us denote the set of all such numbers by ¯̄S. it is easy to see that ¯̄S = S̄.
∗Speaker
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2 Main results

We know if enhanced power graphs are isomorphic then power graphs are isomorphic, so groups have
the same number of elements of each order. Therefore, if Pe(G) ≅ Pe(H) then G and H have the same
number of elements of each order. By expanding these explanations, we reach the following Theorem.

Theorem 2.1. If G is one of the following finite groups:

1. A cyclic group,

2. A symmetric group,

3. A dihedral group,

4. A generalized quaternion group,

and H is a finite group such that Pe(G) ≅ Pe(H) implies that G ≅H.

In [2], we have proved some results for the set S̄. Since S̄ = ¯̄S, all those results hold for the set ¯̄S.

Proposition 2.2. If p is a prime number, then 2p2 ∈ ¯̄S.

Theorem 2.3. If n ∉ ¯̄S and (n, k) = 1, then nk ∉ ¯̄S.

Theorem 2.4. Let n = 2α0pα1

1 ⋯pαr
r (r ≥ 0). If α0 ≥ 4 or there exists i ≠ 0 such that αi ≥ 3, then n /∈ ¯̄S.

Corollary 2.5. Every odd element of ¯̄S is cube-free.

Theorem 2.6. The set ¯̄S ∖ S is non-empty. Its smallest element is 72.

For the set S̄∖S, we tried to generalize the example of groups of orders 72. If we could prove for every
odd prime p, the number 8p2 ∈ S̄ ∖ S, then the set S̄ ∖ S is infinite. Define the following two groups:

G = ⟨a, b, x, y ∣ ap = bp = x2 = y2 = 1, (xa)2 = (xb)2 = 1, ab = ba, ay = ya, by = yb, (xy)4 = 1⟩.
G′ = ⟨a, b, x, y ∣ ap = bp = x2 = y2 = z2 = 1, (xy)2 = z, ab = ba, xax = a−1, xbx = b, yay = b, yby = a⟩.
We checked that G and G′ are conformal and P (G′) cannot be isomorphic with P (G). This is not

enough to prove that for every odd prime p, 8p2 ∈ S̄∖S, because there might be further pairs of conformal
groups of the given order. However, we suspect that such pairs do not exist, which led us to the following
conjecture:

Conjecture 2.7. The set S̄ ∖ S is infinite.
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Abstract

In this article, we study the Sombor index matrix of some graphs and find determinant of them by
the determinant of adjacency matrices.

1 Introduction

One of topological indices introduced by Ivan Gutman in 2021 name the Sombor index. This index use
for predicting some phisicochemical properties of substances.

Definition 1.1. Let G = (V,E) be a graph such that V (G) denotes vertices set and E(G) denotes edges
set, then the adjacency matrix of G, A(G) = (aij)nn is defined as bellow

aij =
⎧⎪⎪⎨⎪⎪⎩

1 if vi and vj are adjacent

0 otherwise

and the Sombor matrix of G, ASO = a′ij is defined as below

a′ij =
⎧⎪⎪⎨⎪⎪⎩

√
d2i + d2j if vi and vj are adjacent

0 otherwise
(1)

Also Sombor index of graph G is defined as

SO(G) = ∑
uv∈E(G)

√
d2u + d2v. (2)

Theorem 1.2. let G is a complete graph with n vertices, then

det(ASO(Kn)) = [
√
2(n − 1)]n(−1)n−1(n − 1) =

√
2
n
(−1)n−1(n − 1)n+1. (3)
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Proof. By this propertiy that det(aA(G)) = andet(A(G)) and det(A(Kn)) = (−1)n−1(n−1), it is concluded
that

det(ASO(Kn)) = [
√
2(n − 1)]n(−1)n−1(n − 1) =

√
2
n
(−1)n−1(n − 1)n+1. (4)

Remark 1.3. Let G, be a r -regular graph and A(G) and ASO(G) denote the adjacency matrix and
Sombor matrix of graph G, in respectively, then, ASO(G) =

√
2rA(G) and

det(ASO(G)) = (
√
2r)ndet(A(G)). (5)

Definition 1.4. A Toeplitz matrix is an n × n matrix Tn = [tk,j , k, j = 0, ... n − 1] where tk,j = tk − j, in
other words, a matrix of the form

Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0
t1
t2
⋮

t−1
t0
t1
⋮

t−2
t−1
t0
⋮

⋯
⋯
⋱

t−(n−1)

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Theorem 1.5. Let G is a complete graph with n vertices, then

ASO(G).A(G) = Tn (7)

where Tn is a Toeplitz matrix such that

tk,j = {
√
2(n − 1)2 k = j√
2(n − 1)(n − 2) k ≠ j (8)

and

ASO(G)2 = Tn (9)

where Tn is a Toeplitz matrix such that

tk,j = {
2(n − 1)3 k = j
2(n − 1)2(n − 2) k ≠ j (10)

Proof. By multiple the Sombor matrix in own and comparing it with the Toeplitz matrix.

Theorem 1.6. Let G be a cycle graph with n vertices, then

det(ASO(Cn)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2n+1(
√
2)n, if n is odd

0,

−2n+2(
√
2)n,

Proof. The determinant of A(Cn) for n ≥ 3 is det(A(Cn)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2, if n is odd

0,

−4,
So, det(ASO(Cn)) =

(
√
8)ndetA(Cn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2n+1(
√
2)n, if n is odd

0,

−2n+2(
√
2)n,
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Theorem 1.7. If K(m,n), m,n ∈ N be a complete bipartite graph, then

ASO(K(m,n)) = aA(K(m,n)) (11)

where a =
√
m2 + n2. Also

det(ASO(K(m,n))) = andet(A(K(m,n))) = 0. (12)

Proof. Whereas the columns of the matrix A is linear dependent, so the determinant of the matrix A is
zero and in result det(ASO(K(m,n))) = 0.

Corollary 1.8. If Sn, n ∈ N be a star graph, then

ASO(Sn) = aA(Sn) (13)

where a =
√
(n − 1)2 + 1 =

√
n2 − 2n + 2. Also

det(ASO(Sn)) = andet(Sn)) = 0. (14)

Proof. Whereas the columns of the matrix A is linear dependent, so the determinant of the matrix A is
zero and in result det(ASO(Sn)) = 0.

2 Conclusions

In this paper, we provid the Sombor index matrix for some graphs and find the determinant of them by
the determinant of the adjacency matrices of the graphs.
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Abstract

In this paper, we study the Somber index of some cactus chain graphs without any pendant edges
and some pendants edges.

1 Introduction

In the references [1] , [3] , [4] and [5] the Sombor index of trees and some cactus chain graphs has calculated.
and in [2] Zagreb index formula stated as below and we use it for gaining the Sombor index.

Let G = (V,E) be a graph such that ∣V (G)∣ = n and ∣E(G)∣ = m, then the Somber index and Zagreb
index are respectively defined as following:

SO(G) = ∑
uv∈E(G)

√
d2(u) + d2(v), (1)

M1(G) = ∑
uv∈E(G)

(d(u) + d(v)) = ∑
u∈V (G)

d2(v) (2)

where d(u) is degree of vertex u in G, A non-trival connected graph in which each edge locates in at most
one cycle is named a cactus gragh.

2 The Sombor Index of Some Cactus Chain Graphs

Theorem 2.1. Let G be a cactus chain of polygonals with the sides number pi > 3, then SO(G) =
2
√
2∑c

i=1 pi − 8(
√
2 −
√
5)(c − 1) ans SO(G) = M1(G)√

2
+ (c − 1) 8

√
10−24√
2

.

Proof. mathematical induction on c.
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Figure 1: A cactus chain graph G with ideal pi− polygonals (pi > 3) and c ring.

Corollary 2.2. Let G = (V (G),E(G)) be a cactus chain such that ∣V (G)∣ = n, ∣E(G)∣ = m, p be the
number of the sides of a polygonal (p ≥ 3) and c be the number of the rings in the cactus chain as the
figures 2, then

SO(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

6
√
2 p = 3, c = 1

4(
√
2 +
√
5)c − 4

√
2 p = 3, c > 1

2
√
2p + 2(c − 1)[(p − 4)

√
2 + 4
√
5] ∀ p > 3 and ∀ c.

(3)

Also

SO(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(G)√
2
= 6
√
2 p = 3, c = 1

M1(G)√
2
+ 8
√
10−24√
2
+ ( 4

√
10−12√
2
)(c − 2) p = 3, c ≥ 2

M1(G)√
2
+ 8
√
10−24√
2
(c − 1) p > 3, ∀c.

(4)

Proof. By the mathematical induction on c and p.

Figure 2: A cactus chain graph G for p = 3 and p ≥ 4 and c ring.

Theorem 2.3. let G0 be a connected graph contained vertices u1, u2, u3, u4 such that dG0(u1) = 2, dG0(u2) =
3 ∨ 4, dG0(u3) = 2, dG0(u4) = 2 ∨ 4 and
{u1u2, u1u3, u3u4} ⊆ E(G0). Suppose that L = v1v2...vl is a path. Denote by G1 the graph gotten from G0,
L by attaching vertices u1v1. Let G2 = G1 − u1v1 + u3v1. Then

{ SO(G2) ≥ SO(G1), if dG0(u4) ≥ dG0(u2)
SO(G2) < SO(G1), if dG0(u4) < dG0(u2).

(5)

Proof. By the definition of the Sombor index, SO(G2)−SO(G1) = (
√
22 + 32+

√
32 + d2G0

(u4))−(
√

32 + d2G0
(u2)+√

32 + 22), then consider probable numbers for dG0(u4) and dG0(u2) and determine the sign of the relation
for them.

Theorem 2.4. Let G = (V (G),E(G)), ∣V (G)∣ = n, ∣E(G)∣ = m and p be the number of sides of a
poliygonal of the cactus chain such that for p > 3 and c > 3 every two rings put on non-adjacent vertices

128



M. Mohammadi, H. Barzegar

and the other vertices have pendant one edge, then

SO(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

9
√
2 + 3
√
10 c = 1, p = 3

(4
√
2 +
√
10 + 10)c + 2(

√
10 −
√
2) c > 1, p = 3

(3
√
2 + p
√
10)c + (20 − 2

√
10 − 12

√
2)(c − 1) ∀c, p > 3.

(6)

Also

SO(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(G)√
2
+ 3
√
20−12
2

p = 3, c = 1

M1(G)√
2
+ 4
√
20+20

√
2−44√

2
+ (c − 2) 10

√
2+
√
20−18√
2

p = 3, c ≥ 2

M1(G)√
2
+ (
√
18 +
√
10 − 5

√
2)p + (c − 1) 20

√
2+2
√
20−36√

2

+(p − 4)(c − 1) 3
√
2+
√
10−5

√
2√

2
p ≥ 4,∀c

(7)

Proof. By the mathematical induction on c and p.

Figure 3: Graph G for p = 3 and p ≥ 4

3 Conclusions

In this paper, we provid the Sombor index formula directly and undirectly (base on the Zagreb index) for
a group of the chain graphs.
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Abstract

A dominating set in a graph G = (V,E) is a set S such that every vertex of G is either in S or
adjacent to a vertex in S. The minimum cardinality of a dominating set in G is called the domination
number of G denoted by γ(G), and the maximum cardinality of a minimal dominating set in G is
called the upper domination number of G and is denoted by Γ(G). The difference between these two
parameters is called the domination gap of G and is denoted by µd(G) = Γ(G)−γ(G). A graph G with
µd(G) = 0 is called a well-dominated graph. Motivated by well-dominated graph, we introduce well-
independent dominated graphs. A graph G with µid(G) = Γi(G)−γi(G) = 0 is called a well-independent
dominated graph, where γi(G) and Γi(G) are independent domination number and upper independent
domination number of G, respectively. We obtain some results about the independent domination gap
in special graphs.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loop nor parallel edge. Let G be
such a graph. A non-empty set S ⊆ V (G) is a dominating set if every vertex in V (G)/S is adjacent to
at least one vertex in S. The minimum cardinality of all dominating sets of G is called the domination
number of G and is denoted by γ(G). For a detailed treatment of domination theory, the reader is referred
to [4]. The maximum cardinality of a minimal dominating set in G is called the upper domination number
of G denoted by Γ(G). The difference between these two parameters is called the domination gap of G
and denote it by µd(G) = Γ(G) − γ(G). A graph G with µd(G) = 0 is called a well-dominated graph.
Domination gap was first introduced by Finbow et al. in [2]. An independent dominating set of G is a
vertex subset that is both dominating and independent in G, or equivalently, is a maximal independent
set. The independent domination number of G, denoted by γi(G), is the minimum size of all independent
dominating sets of G. The following relationship between these parameters in consideration is well-known
[4],

γ(G) ≤ γi(G) ≤ α(G).
The maximum cardinality of a minimal independent dominating set in G is called the upper independent
domination number of G denoted by Γi(G). For more information on independent dominating sets and
their counting refer to [3, 5].
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Motivated by the domination gap, we introduce well-independent dominated graphs and obtain some
results about this kind of graphs.

2 Main results

In this section, we introduce well-independent dominated graphs and obtain some calculation of the
independent domination gap in special graphs.

Definition 2.1. The difference between the upper independent domination number of G and the in-
dependent domination number of G is called the independent domination gap of G and denote it by
µid(G) = Γi(G) − γi(G). We say G is a well-independent dominated graph, if µid(G) = 0.

The friendship (or Dutch-Windmill) graph Fn is a graph that can be constructed by the coalescence of
n copies of the cycle graph C3 of length 3 with a common vertex. Let n and q ≥ 3 be any positive integer
and Fq,n be the generalized friendship graph formed by a collection of n cycles (all of order q), meeting
at a common vertex. The n-book graph (n ≥ 2) is defined as the Cartesian product K1,n ◻ P2. We call
every C4 in the book graph Bn, a page of Bn. All pages in Bn have a common side v1v2. The following
lemma gives the independent domination number of the friendship graph and the book graph.

Lemma 2.2. (i) If Fn is a friendship graph, then µid(Fn) = n − 1.
(ii) For k = 4,5,6, µid(Fk,n) = n⌊k3 ⌋ − 1.
(iii) If Bn is a book graph, then µid(Bn) = 1.

Figure 1: Chain triangular cactus Tn

Figure 2: Para-chain square cactus Qn

We consider a class of simple linear polymers called cactus chains. Cactus graphs were first known
as Husimi tree, they appeared in the scientific literature some sixty years ago in papers by Husimi and
Riddell concerned with cluster integrals in the theory of condensation in statistical mechanics. We refer
the reader to papers [1] for some aspects of parameters of cactus graphs.

A cactus graph is a connected graph in which no edge lies in more than one cycle. Consequently, each
block of a cactus graph is either an edge or a cycle. If all blocks of a cactus G are cycles of the same
size i, the cactus is i-uniform. A triangular cactus is a graph whose blocks are triangles, i.e., a 3-uniform
cactus. A vertex shared by two or more triangles is called a cut-vertex. If each triangle of a triangular
cactus G has at most two cut-vertices, and each cut-vertex is shared by exactly two triangles, we say that
G is a chain triangular cactus (Figure 1). we denote the chain triangular cactus of length n by Tn. By
replacing triangles in this definitions with cycles of length 4 we obtain cacti whose every block is C4. We
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Figure 3: Ortho-chain square cactus On

call such cacti square cacti. Note that the internal squares may differ in the way they connect to their
neighbors. If their cut-vertices are adjacent, we say that such a square is an ortho-square (Figure 3); if
the cut-vertices are not adjacent, we call the square a para-square (Figure 2).

Here we compute the independent domination gap of some cactus chains:

Theorem 2.3. (i) µid(Tn) = ⌊n2 ⌋.
(ii) µid(Qn) = n − 1.
(iii) For n ≥ 2, µid(On) = 1.
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Abstract

Let G = (V,E) be a graph and D ⊆ V . A vertex v ∈ V is a dominator of D if v dominates every
vertex in D and v is said to be an anti-dominator of D, if v dominates none of the vertices of D. Let
C = (V1, V2, ..., Vk) be a coloring of G. A color class Vi is called a dom-color class or an anti dom-color
class of the vertex v according as v is a dominator of Vi or an anti-dominator of Vi. The coloring
C is called a global dominator coloring of G, if every vertex of G has a dom-color class and an anti
dom-color class in C. The minimum number of colors required for a global dominator coloring of G is
called the global dominator chromatic number and is denoted by χgd(G). In this paper, we study the
global dominator chromatic number for some graphs.

1 Introduction

Let G be a simple graph. For any vertex v ∈ V (G), the open neighborhood of v is the set N(v) = {u ∈
V (G)∣u ∼ v} and the closed neighborhood is the set N[v] = N(v) ∪ {v}. For a set D ⊂ V , the open
neighborhood of D is N(D) = ⋃v∈DN(v) and the closed neighborhood of S is N[D] = N(D) ∪D. A set
D ⊂ V is a dominating set if N[D] = V , or equivalently, every vertex in V ∖D is adjacent to at least one
vertex in D. The domination number γ(G) is the minimum cardinality of the dominating set in G. A
dominating set D of G is a global dominating set of G if D is also a dominating set of the complement Gc

of G. The minimum cardinality of a global dominating set of G is called the global domination number
of G and is denoted by γg(G) or simply γg.

Some concepts (such as dominator coloring and total dominator coloring) related to domination and
coloring have been introduced and well-studied in the literature. A dominator coloring of a graph G is a
coloring of G in which every vertex dominates every vertex of at least one color class. A total dominator
coloring of G, is a proper coloring of the vertices of G in which each vertex of the graph is adjacent to
every vertex of some color class. The minimum number of colors required for a dominator coloring of G
(total dominator coloring) is called the dominator chromatic number of G and is denoted by χd(G) (by
χt
d(G)) (see [1, 5]).
A vertex v ∈ V is a dominator of D if v dominates every vertex in D and v is said to be an anti-

dominator of D, if v dominates none of the vertices of D. Let C = (V1, V2, ..., Vk) be a coloring of G.
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A color class Vi is called a dom-color class or an anti dom-color class of the vertex v according as v is
a dominator of Vi or an anti-dominator of Vi. The coloring C is called a global dominator coloring of
G, if every vertex of G has a dom-color class and an anti dom-color class in C. The minimum number
of colors required for a global dominator coloring of G is called the global dominator chromatic number
and is denoted by χgd(G). This parameter has introduced by Hamid and Rajeswari in [3]. They have
determined the value of χgd for some common classes of graphs such as paths, cycles, complete multipartite
graphs and the Petersen graph. As a vertex v dominates itself, the vertex v is a dominator of {v}, whereas
it is not an anti-dominator of {v}. Hence a graph G does not admit a global dominator coloring when
∆(G) = n − 1. For example the friendship graph Fn which is join of K1 and nK2 does not admit a global
dominator coloring.

In this paper, we continue the study of the global dominator chromatic number and compute it for
some graphs.

2 Main results

In this section, determine the value of χgd for some graphs. We need the following lemmas:

Lemma 2.1. (i) For the path Pn on n ≥ 4 vertices, we have

χgd(Pn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌈n
3
⌉ + 1; if n = 7,

⌈n
3
⌉ + 2; elsewhere.

(ii) For the cycle Cn on n ≥ 4 vertices, χgd(Cn) = ⌈n3 ⌉ + 2.

Theorem 2.2. [4] If G is a triangle-free graph, then γ ≤ γg ≤ γ + 1

Theorem 2.3. [2] Let T be a tree. Then γg(T ) = γ + 1 if and and only if either T is a star or T is a tree
of diameter 4 which is constructed from two or more stars, each having at least two pendant vertices, by
connecting the centres of these stars to a common vertex.

Theorem 2.4. For two paths Pn, Pm on n,m ≥ 2 vertices, we have

χgd(Pn ◻ Pm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈nm
3
⌉ + 1 if n = 2,m = 4,

⌈nm
3
⌉ + 2 elsewhere.

The following theorem gives the global dominator chromatic number of corona of Pn and K1, i.e.,
Pn ○K1.

Theorem 2.5. χgd(Pn ○K1) = n + 1.

By virtue of a theorem, the family of trees can be split into two classes, namely Class 1 and Class 2.
A tree T is of Class 1 or Class 2 according as χgd(T ) = γg(T ) + 1 or χgd(T ) = γg(T ) + 2. The problem of
characterizing trees of Class 1 or Class 2 seems to be little challenging ([3]). By Theorem 2.5 we see that
the graph Pn ○K1 is an example of trees T for which χgd(T ) = γg(T ) + 1.
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Abstract

For a graph G, the Sombor index SO(G) is a recently introduced by I. Gutman. In this talk, we
provide some lower and upper bounds for SO(G) and improve the known bounds for the Sombor index.

Joint work with: S. Akbari and M. Habibi

1 Introduction

Let G = (V (G),E(G)) be a simple graph, where V (G) and E(G) are the vertex set and the edge set of
G, respectively. For a vertex v ∈ V (G), we denote the degree of v by dv. By an r-regular graph, we mean
a graph in which all of its edges have the same degree. Also, the maximum and minimum degrees of G
are denoted by ∆(G) and δ(G), respectively. In this talk, the energy of a graph G, is shown by E(G) and
is defined as the sum of the absolute values of its adjacency eigenvalues. Let C be a subset of V (G). If
every edge of E(G) is incident with a vertex of C, then the set C is said to be a vertex cover set of G.
Moreover, the Sombor index of G is defined as SO(G) = ∑xy∈E(G)

√
d2x + d2y.

Definition 1.1. [1] For a graph G with vertex set v1, . . . , vn, the energy of the vertex vi with respect to
G, which is denoted by E(vi), is given by

E(vi) =∑
n

i=1 ∣A(G)∣ii for i = 1, . . . , n,

where ∣A∣ = (AA∗)1/2 and A is the adjacency matrix of G.

Therefore, according to the definition of energy of graphs, we have:

E(G) = E(v1) +⋯ + E(vn).

Also,

E(G) =∑xy∈E(G) (
E(x)
dx
+ E(y)

dy
).
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In fact, we can define the energy of the edge e = xy by decomposing it into two adjacent vertices x and y,
as follows:

E(e) = E(x)
dx
+ E(y)

dy
.

Theorem 1.2. [1, Pro. 3.2] For a graph G and a vertex x ∈ V (G), we have E(x) ≤
√
dx with equality if

and only if the connected component containing vx is isomorphic to the star graph Sn and x is its center.

Theorem 1.3. [1, Pro. 3.3] Let G be a connected graph with at least one edge. Then E(x) ≥ dx
∆(G)

, for

all x ∈ V (G). Equality holds if and only if G is isomorphic to complete bipartite graph Kd,d.

Theorem 1.4. [1, Thm. 3.6] Let G be a graph with at least one edge. Then E(vi) ≥
√

di
∆(G)

, for every

vi ∈ V (G).

Recall that a graph G is called completely non-hypoenergetic if E(v) ≥ 1 for all v ∈ V (G). Clearly,
according to the above theorem, regular graphs are completely non-hypoenergetic. This result is stated
in Proposition 4.9 of [1].

Theorem 1.5. [1] Let G be a graph with vertex covering set C. Then ∑x∈C E(x) ≥
1

2
E(G).

2 Main results

In Theorem 5 of [2], the authors proved the following result.

Theorem 2.1. Let G be a simple graph. If C is a vertex-covering set of G, then

√
δ(G)E(G)

2
+ ∣C ∣∆

2(G)√
2

≤ SO(G)

In this talk we improve this result as follows:

Theorem 2.2. Let G be a graph. If C is a vertex-covering set of G, then

E(G) ≤ 2

δ(G)
√
δ(G)

SO(G) + 4
√
δ(G) − 1
δ(G)

∣E(G[C])∣.

In Theorem 7 of [3] the following upper bound for SO(G) is stated in terms of E(G), ∆(G) and size
of G as follows:

Theorem 2.3. Let G be a graph of size m. Then SO(G) ≤
√
E(G)m∆5(G)

Now, we improve this upper bound for regular graphs, as follows:

Theorem 2.4. Let G be an r-regular graph of order n. Then SO(G) ≤
√

nr5

2
E(G).

In [2] the authors proved the following result for bipartite graphs.

Theorem 2.5. [2, Thm. 4] Let G be a bipartite graph. Then E(G) ≤
√

2

δ3(G)
SO(G).

Now, in the following theorem, we prove this bound for an arbitrary graph.

Theorem 2.6. Let G be graph. Then E(G) ≤
√

2

δ3(G)
SO(G). Moreover, the equality holds if and only

if each connected component of G is isomorphic to K2.
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We finish this work by stating two new following lower bounds for SO(G).

Theorem 2.7. Let G be a graph. Then we have SO(G) ≥ δ(G)
√
E(G).

Theorem 2.8. Let G be a graph of size m . Then SO(G) ≥ δ(G)
√
E(G) − 2m∆(G)

δ(G)
.
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Abstract

For given graphs G1,G2, . . . ,Gt the Ramsey number R(G1,G2, . . . ,Gt) is the smallest positive inte-
ger n such that if the edges of the complete graph Kn are partitioned into t disjoint color classes giving
t graphs H1,H2, . . . ,Ht, then at least one Hi has a subgraph isomorphic to Gi. In this note, the exact
value of R(K1,n1 ,K1,n2 , . . . ,K1,nt ,Wm) will be determined for odd m, m ≤ Σt

i=1(ni − 1) + 1.

1 Introduction

In this note, we only concerned with undirected simple finite graphs and we follow [1] for terminology
and notations not defined here. As usual, a complete graph, a cycle, a path and a star on n vertices are
denoted by Kn, Cn, Pn and K1,n−1, respectively. The wheel Wm is the graph on m + 1 vertices obtained
from the cycle Cm by adding one vertex x, called the hub of the wheel, and making x adjacent to all
vertices of Cm, called the rim of the wheel. The wheel Wm is called odd if m is odd.

Let G,G1,G2, . . . ,Gt be given simple graphs. The Ramsey number R(G1,G2, . . . ,Gt) is the smallest
positive integer n such that if the edges of the complete graph Kn are partitioned into t disjoint color
classes giving t graphsH1,H2, . . . ,Ht, then at least oneHi has a subgraph isomorphic to Gi. The existence
of such a positive integer is guaranteed by the Ramsey’s classical result [6]. There is very little known
about R(G1,G2, . . . ,Gc) for c ≥ 3, even for very special graphs. For a survey on Ramsey theory, we
refer the reader to the regularly updated survey by Radziszowski [5]. The Ramsey number of stars was
determined in [2], as follows.

Theorem 1.1. ([2]) If R = R(K1,n1 ,K1,n2 , . . . ,K1,nt) and Σ = Σt
i=1(ni − 1), then

(i) R = Σ + 2 if either Σ is odd or Σ is even and all ni’s are odd.

(ii) R = Σ + 1 if Σ is even and at least one ni is even.

A graph G is called H-free if it does not contains H as a subgraph. The notation ex(p,H) is defined
as the maximum number of edges in a H-free graph on p vertices. The exact value of the ex(p,Cn) is
known in some cases. The following theorem can be found in [1].
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Theorem 1.2. ([1]) If n and p are positive integers such that n ≤ 1
2
(p + 3), then ex(p,Cn) = ⌊p

2

4
⌋.

In 1959, Erdős and Gallai [3] proved that every graph G on p vertices and at least (n−2)
2

p + 1 edges

contains a path of order n, i.e ex(p,Pn) ≤ (n−2)2
p. Motivated by this result, Erdős and Sós conjectured

that if G is a graph on p vertices and more than (n−2)
2

p edges, then G contains every tree T on n vertices.

In other words, ex(p, T ) ≤ (n−2)
2

p. Various specific cases of this conjecture have already been proved,
especially for trees of diameter at most four [4].

2 Main results

The aim of this note is to determine the Ramsey number R(K1,n1 ,K1,n2 , . . . ,K1,nt ,Wm), for odd m,
m ≤ Σt

i=1(ni − 1) + 2. Hereafter, for given positive integers n1, n2, . . . , nt we use Σ to denote Σt
i=1(ni − 1).

In the following theorem, we determine R(K1,n1 ,K1,n2 , . . . ,K1,nt ,Cm) for odd m, m ≤ Σ + 1.

Theorem 2.1. Let m be odd, Tn1 , . . . , Tnt are trees satisfying Erdős and Sós conjecture.
If r = R(Tn1 , Tn2 , . . . , Tnt) and m ≤ Σ + 1 ≤ r, then R(Tn1 , Tn2 , . . . , Tnt ,Cm) = 2r − 1.

Proof. By the definition, there exists a t-edge coloring, say c, of Kr−1 such that the i-th color class,
1 ≤ i ≤ t, contains no copy of Ti. Let A and B be two disjoint copies of Kr−1 whose edges are colored by
t colors α1, α2, . . . , αt according to c. Now, color the remaining edges of 2Kr−1 (edges between A and B)
by an additional color αt+1. Clearly, the induced graph on edges with color αt+1 is a bipartite graph and
so can not contain Cm, because m is odd. This observation shows that R ≥ 2r − 1.

Now, assume that K2r−1 is edge-colored by colors α1, α2, . . . , αt+1 and let Hi, 1 ≤ i ≤ t + 1, denote the
subgraph of K2r−1 induced by edges with color αi. Since Tn1 , Tn2 , . . . , Tnt are trees satisfying Erdős and
Sós conjecture, using Theorem 1.2, we may assume that

∣E(Hi)∣ ≤
ni − 1
2
(2r − 1), ∣E(Ht+1)∣ ≤ ⌊

(2r − 1)2

4
⌋.

Using Theorem 1.1, one can easily check that ∑t+1
i=1 ∣E(Hi)∣ < ∣E(K2r−1)∣ for m ≤ Σ ≤ r+1, which means

that R ≤ 2r − 1. This observation completes that proof.

Finally, using Theorem 2.1, we have the following theorem, which determine the exact value of the
R(K1,n1 ,K1,n2 , . . . ,K1,nt ,Wm) for odd m, m ≤ Σ + 1.

Theorem 2.2. If m is odd, Σ ≥m − 2 and r = R(K1,n1 ,K1,n2 , . . . ,K1,nt), then

R(K1,n1 ,K1,n2 , . . . ,K1,nt ,Wm) = 3r − 2.

Proof. By the definition, there exists a t-edge coloring of Kr−1, say c, such that the i-th color class,
1 ≤ i ≤ t, contains no copy of K1,ni . Let A, B and C be three disjoint copies of Kr−1 whose edges are
colored by t colors α1, α2, . . . , αt according to c. Now, color the remaining edges of 3Kr−1 (edges between
A, B and C) by an additional color αt+1. Clearly, the induced graph on edges with color αt+1 is tripartite
and so can not contain Wm, because χ(Wm) = 4. This observation shows that R ≥ 3r − 2.

Now, consider an arbitrary (t + 1)-edge coloring of G = K3r−2 by colors α1, α2, . . . , αt+1 and let Hi,
1 ≤ i ≤ t + 1, be the subgraph of K3r−2 induced by the edges of color αi. We assume that K1,ni ⊈ Hi,
1 ≤ i ≤ t, and we prove that Wm ⊆Ht+1. Let H be the subgraph of K3r−2 induced by the edges with colors
α1, α2, . . . , αt.

Claim. δ(H) ≤ r − 2.

On the contrary, let δ(H) ≥ r − 1. If either Σ is odd or Σ is even and all ni are odd, then by Theorem
1.1, r = Σ + 2 and so δ(H) ≥ Σ + 1, which means that K1,ni ⊆ Hi for some i, 1 ≤ i ≤ t, a contradiction.
Thus, let Σ be even and at least one ni, say nt, be even. In this case, by Theorem 1.1 r = Σ + 1 and so
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each vertex of H must have degree precisely Σ and each color appears exactly ni − 1 times in each vertex
of H, because K1,ni ⊈ Hi, 1 ≤ i ≤ t. Now, Ht is a (nt − 1)-regular graph on 3r − 2 vertices. Since Σ and
nt are even, we are seeking a regular graph of odd order and degree, a contradiction. This contradiction
shows that δ(H) ≤ r − 2.

Let v be a vertex in H with degH(v) ≤ r − 2 and G′ = G− (N(v)∪ {v}). Clearly G′ has at least 2r − 1
vertices and so by Theorem 2.1, we have a copy of Cm in color αt+1 in G′ and hence a copy of Wm in
Ht+1 with the hub v. This observation shows that R ≤ 3r − 2 which completes that proof.
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Abstract

Let G be a group and S be a symmetric subset of G (i.e., S−1 = S). The Cayley graph Cay(G,S) is
the graph whose vertices are the elements of G and two distinct vertices g and h are adjacent if and only
if g−1h ∈ S. Now, let H be a subgroup of G and S be a subset of G where S ∩H is a symmetric subset
of H. The group-subgroup pair graph, or briefly pair graph, which is denoted by Cay(G,H,S), is the
undirected graph with vertices G and simple edges given by (h,hs) for all h ∈H,s ∈ S. If we set H = G,
then the pair graph Cay(G,H,S) is isomorphic to the Cayley graph Cay(G,S) which means that the
pair graph is a generalization of Cayley graphs. In this paper, we study the local metric dimension
of Cay(G,H,S). Also, we investigate the metric dimension, local metric dimension and edge metric
dimension of Cay(Zn,H,S).

1 Introduction

Let G be a group and S be a symmetric subset of G (i.e., S−1 = S). The Cayley graph Cay(G,S) is
the graph whose vertices are the elements of G and two distinct vertices g and h are adjacent if and
only if g−1h ∈ S. Cayley graphs have been widely investigated, for example in [1] and [5]. Recently, in
[4], for a group-subgroup pair (G,H) and a subset S of G where S ∩H is a symmetric subset of H, a
Cayley-type graph which is a generalization of Cayley graphs, was introduced and studied. This graph
is called the group-subgroup pair graph, or briefly pair graph, and we denote it by Cay(G,H,S) in this
paper. Cay(G,H,S) is the undirected graph with vertices G and simple edges given by (h,hs) for all
h ∈H,s ∈ S.

Let G be a connected and simple graph with vertex set V (G) and edge set E(G). Let u, v ∈ V (G).
The distance between u and v, which is denoted by d(u, v), is the length of a shortest path connecting
them. Let W = {v1, . . . , vk} be a subset of V (G). Then the vector r(v∣W ) = (d(v, v1), . . . , d(v, vk)) is
the metric W-representation of a vertex v ∈ V (G). A subset W ⊆ V (G) is a metric generator for G
if the vertices of G have pairwise different metric W-representations. A metric basis for G, is a metric
generator of the smallest order, and its order is the metric dimension dim(G) of G. The definition of
metric dimension was proposed by F. Harary and R. A. Melter [3]. Usually, it is not needed to distinguish
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all pairs of vertices but only adjacent ones. From this reason the local metric dimension was introduced in
[2]. A subset W ⊆ V (G) is called a local metric generator for G if the adjacent vertices of G have pairwise
different metric W-representations. The local metric dimension of G, which is denoted by dimℓ(G), is
the smallest order of a local metric generator, and such a set is a local metric basis for G. The vector
r(e∣W ) = (d(e, v1), . . . , d(e, vk)) is the edge metric W-representation of an edge e ∈ V (G), where for an
edge e = xy ∈ E(G) and v ∈ V (G), we have d(e, v) =min{d(x, v), d(y, v)}. A subset W ⊆ V (G) is an edge
metric generator for G if the edges of G have pairwise different edge metric W-representations. An edge
metric generator of the smallest order is called an edge metric basis for G, and its order is called the edge
metric dimension of G, which is denoted by edim(G) [6].

2 Main results

In this Section, we study the local metric dimension of Cay(G,H,S). Also, we investigate the metric
dimension, local metric dimension and edge metric dimension of Cay(Zn,H,S), when H = ⟨p⟩ for a prime
number p, and S = {±1,±3}.

Proposition 2.1. Assume that Cay(G,H,S) is connected. Then

dimℓ(Cay(G,H,S)) ⩽ ∣H ∣.

Also if S contains exactly one representative from each coset of H other than H, where H ≠ {e}, then
dimℓ(Cay(G,H,S)) ⩽ ∣H ∣ − 1.

Proposition 2.2. Let H be a nontrivial subgroup of G such that Cay(G,H,S) be connected and SH = ∅.
Then

dimℓ(Cay(G,H,S)) ⩽ ∣H ∣ − 1.

Moreover if S contains exactly one representative from each coset of H other than H, then dimℓ(Cay(G,H,S)) =
1.

Example 2.3. Let G be a group of order n and H be a subgroup of G with SH = ∅.
(i) Let H = {e}. Then Cay(G,H,S) is the union of K1,∣S∣ and ∣G∣ − ∣S∣ − 1 isolated vertices. So
dimℓ(Cay(G,H,S)) = 1.
(ii) Let H = G. Then S is the empty set and so Cay(G,H,S) is the empty graph. Thus dimℓ(Cay(G,H,S)) =
1.
(iii) Let S = G−H. Then since SH = ∅, there is no adjacency between the vertices of H. Also each vertex in
H is adjacent to all vertices of S, and each vertex in G−H is adjacent to all vertices of H. So Cay(G,H,S)
is isomorphic to the complete bipartite graph K∣S∣,∣H ∣, and therefore we have dimℓ(Cay(G,H,S)) = 1.

In the following theorem, we investigate the local metric dimension of Cay(G,H,S) in a general
situation. To do this, for a subset S of G −H, we set S∼ ∶=H ∩ SS−1.

Theorem 2.4. Assume that G is a group, H is a subgroup and S is a subset of G. Let K =< SH ∪S∼O >.
Then

dimℓ(Cay(G,H,S)) = [H ∶K]dimℓ(Γe),

where Γe is the induced subgraph of Cay(G,H,S) with vertex set K ∪KSO.

Example 2.5. Suppose that G = Z55, H = ⟨5⟩ and S = {±1,±3}. Since SH = ∅ and SO = S, we have
S∼O =H ∩SS−1 = {0} and K = ⟨∅∪{0}⟩ = ⟨0⟩. Hence K ∪KSO = S ∪{0}. Since Γe is the induced subgraph
of Cay(Z55, ⟨5⟩, S) with vertex set S ∪ {0}, we have Γe is isomorphic to K1,4. So dimℓ(Γe) = 1. Clearly
[H ∶K] = 11. Therefore, by Theorem 3.4 we have dimℓ(Cay(Z55, ⟨5⟩, S)) = [H ∶K]dimℓ(Γe) = 11×1 = 11.

Proposition 2.6. Let G = Zn, H be a proper subgroup of G and S = {±1}. Then Cay(G,H,S) is either
a union of ∣H ∣ copies of P3 with n − 3∣H ∣ isolated vertices, or it is the cycle Cn.

Corollary 2.7. Let G = Zn, S = {±1} and H be a proper subgraph of G. If 2 ∉H, then we have

143



A. Rezaei, K. Khashyarmanesh, M. Afkhami

1. dim(Cay(Zn,H,S)) = ∣H ∣, if n = 3∣H ∣. Otherwise, dim(Cay(Zn,H,S)) = n − 2∣H ∣ − 1.
2. dimℓ(Cay(Zn,H,S)) = ∣H ∣.
3. edim(Cay(Zn,H,S)) = ∣H ∣.

Also if 2 ∈H, then the following statements hold.

1. dim(Cay(Zn,H,S)) = 2.
2. dimℓ(Cay(Zn,H,S)) = 1 if n is even. Otherwise dimℓ(Cay(Zn,H,S)) = 2.
3. edim(Cay(Zn,H,S)) = 2.

Theorem 2.8. Let n ≡ 1(mod6) and p be a prime number that divides n. Assume that H = ⟨p⟩ and
S = {±1,±3}. Then the following statements hold.

1. dim(Cay(Zn,H,S)) = n − ∣H ∣ − 1.
2. dimℓ(Cay(Zn,H,S)) = ∣H ∣.
3. edim(Cay(Zn,H,S)) = 4∣H ∣.
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Abstract

A 1-factorisation of a graph is called perfect if it satisfies each of the following equivalent conditions:
1) the union of each pair of 1-factors is isomorphic to the same connected subgraph, 2) the union
of each pair of 1-factors is connected and 3) the union of each pair of 1-factors is a Hamilton cycle.
A 1-factorisation of a graph is called uniform if the union of each pair of 1-factors is isomorphic to
the same subgraph. In this paper we generalise the concept of uniform 1-factorisations from graphs to
hypergraphs in the natural way, and based on the three conditions above, we define four generalisations
of perfect 1-factorisations of graphs to the context of hypergraphs and obtain some results.

1 Introduction

A 1-regular spanning subgraph of a graph is known as a 1-factor. A partition of the edge set of a graph G
into alpha 1-factors is called a 1-factorisation of G often denoted by F = {F1, ..., Fα}. A natural question
is: under what conditions does a 1-factorisation for the complete graph on n vertices , Kn? Clearly n
must be even, and one of the earliest proofs that this condition is sufficient is Kirkmans 1847 construction
of 1-factorisations of Kn for all even integers n ≥ 2 [1]. Given a 1-factorisation of a graph G, a well-studied
problem is to ask if the 1- factorisation has the property that the union of each pair of 1-factors is
isomorphic to the same subgraph H of GṠuch a 1-factorisation is called a uniform 1-factorisation (U1F)
of G and the subgraph H is called the common graph. Furthermore, a uniform 1-factorisation in which
the common graph is a Hamilton cycle is called a perfect 1- factorisation (P1F)Ṫhe following famous
conjecture is due to Kotzig [2].

Conjecture 1.1. For any n ≥ 2, K2n admits a perfect 1-factorisation.
Kotzig provided an infinite family of 1-factorisations of the complete graph K2n that are perfect when
2n − 1 is an odd prime. [3]
Bryant , Maenhaut, and Wanless constructed another infinite family of P1Fs of K2n where 2n − 1 is an
odd prime, which is not isomorphic to the family given by Kotzig.[4]
Anderson gave an infinite family of 1-factorisations of K2n that are perfect when n is an odd prime. [5]
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Besides these infinite families there are a number of sporadic values of n such that K2n has been shown
to admit a P1F. Most recently a P1F of K56 was found by Pike which leaves K64 as the smallest complete
graph for which the existence of a P1F is unknown; [6] for more information on the orders of complete
graphs with known P1Fs, a paper on the number of non-isomorphic P1Fs of K16 by Gill and Wanless is
recommended. [7]
For uniform 1-factorisations that are not perfect, the common graph will be a collection of two or more
disjoint cycles of even lengths . We say that a U1F has type (c1, c2, ..., ct) if the common graph of the
U1F is a collection of t cycles of lengths c1, c2, ..., ct. For complete graphs K2n with 2n ≤ 16, all types
of U1Fs up to isomorphism are known due to a result by Meszka and Rosa [8].

Theorem 1.2. If F is a U1F of K2n, where 2n ≤ 16, then F is one of the following:
(a) a P1F;
(b) a U1F of K8 of type (4, 4);
(c) a U1F of K10 of type (4, 6);
(d) a U1F of K12 of type (6, 6);
(e) a U1F of K16 of type (4, 4, 4, 4).
Further, the U1Fs from cases (b), (c), (d), (e) are unique up to isomorphism.

Besides the above U1Fs there are several known infinite families of U1Fs; for further information on
these families the survey paper on P1Fs by Rosa is recommended. [9]
The goal of this paper is to generalise the concepts of uniform and perfect 1- factorisations from graphs
to hypergraphs. A hypergraph H consists of a non-empty vertex set V (H) and an edge set E(H) where
each element of E(H) is a non-empty subset of the vertex set V (H). The complete k-uniform hypergraph
of order n, denoted Kk

n is the hypergraph on n vertices, where the edges are precisely all the k-sets of
the vertex set. In this paper , to avoid the case of graphs we will consider only k-uniform hypergraphs for
k ≥ 3.

2 Main results

1) The generalization of the concept of 1-factor and 1-factorization from graphs to hypergraphs is
relatively simple.

2) The 2-factor of a hypergraph is a 1-regular sub-supergraph , and the decomposition of a hypergraph
into 1-factors is a separate edge. It is a factorization

3) The necessary condition for the existence of 1-uniform k-complete hypergaf factorization on n ver-
tices is that k∣n.
and Baranyain showed that this condition is also sufficient for k ≥ 3.
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Abstract

The energy E(G) of a graph G is the sum of the absolute values of all the eigenvalues of its adjacency

matrix A(G). The Sombor index of G is defined as ∑uv∈E(G)

√
d2u + d2v, where du and dv are the degrees

of vertices u and v in G. For any graph G we state an upper bound for SO(G) in terms of size of G.
Moreover, we find some new bounds for the Sombor index in terms of graph energy and consider the
relationship between them.

Joint work with: S. Akbari and M. Habibi

1 Introduction

Let G = (V (G),E(G)) be a simple graph, where V (G) and E(G) denote the set of its vertices and edges,
respectively. By the size of G, we mean the number of its edges. The maximum and minimum degrees of
G are denoted by ∆ and δ, respectively. A path of order n is denoted by Pn. The adjacency matrix of G,
denoted by A(G), is an n×n matrix whose (i, j)-entry is 1 if vi and vj are adjacent and 0 otherwise. The
energy of a graph G, is shown by E(G) and is defined as the sum of the absolute values of its adjacency
eigenvalues, i.e.

E(G) =
n

∑
i=1
∣λi∣

where λ1, . . . , λn are the eigenvalues of A(G). This concept was introduced by I. Gutman and is intensively
studied in chemistry, since it can be used to approximate the total π-electron energy of a molecule (see,
e.g.[6],[7]). This graph invariant has been intensively studied in the last two decades, and plenty of
research papers on this subject can be found in the literature in the field of applied mathematics and
mathematical chemistry. The Sombor index SO(G) of G is defined as ∑uv∈E(G)

√
d2u + d2v, where du and
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dv is the degrees of vertices u and v in G. In [3] the energy of Pn was calculated as follows:

E(Pn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

sin
π

2(n + 1)

− 2 if n ≡ 0 (mod 2)

2cos
π

2(n + 1)
sin

π

2(n + 1)

− 2 if n ≡ 1 (mod 2)

.

Theorem 1.1. [2] For a graph G with vertices v1, . . . , vn we have

E(G) ≤
n

∑
i=1

√
di ≤
√
2mn.

Theorem 1.2. [4] Let G be a connected graph of order n. If n ≥ 3 then E(G) < SO(G).

Theorem 1.3. [11] Let G be a graph of size m. Then E(G) ≥ 2m

∆
.

2 Main results

In this section, we state some of new results on the bounds of energy and Sombor index and relationship
between them.

Theorem 2.1. Let G be a connected graph of order n. Then E(G) ≤ SO(G)
δ

.

Theorem 2.2. [1] If G is a connected graph of order n which is not Pn(n ≤ 8), then E(G) ≤
SO(G)

2
.

Theorem 2.3. For any n (n ≠ 3,4), E(Pn) ≤
√
2(n − 1).

In [8] was proven that, for any bipartite graph, E(G) ≤
√

2

δ3
SO(G). In following theorem, we prove

that for every graph of order n this inequality holds.

Theorem 2.4. Let G be a graph. Then E(G) ≤
√

2

δ3
SO(G). If equality holds, then G is regular.

In [10] it was demonstrated that for a connected graph of order n ≥ 2 and size m, SO(G) ≥
√
2mδ.

Now, we give the upper bound for the Sombor index of G and show that SO(G) ≤
√
2m∆. Therefore,

√
2mδ ≤ SO(G) ≤

√
2m∆.

Theorem 2.5. Let G be a graph of size m. Then SO(G) ≤
√
2m∆.

In [5] it was shown that for ∆-regular graph G, SO(G) ≤ E(G)∆2. Also, in [9] it was proven that for

∆-regular graph G, SO(G) ≤ E(G)∆
2

√
2

. Here, we extend this theorem to all graphs.

Theorem 2.6. Let G be a graph. Then, SO(G) ≤ E(G)∆
2

√
2

.

149



S. Rouhani

References

[1] S. Akbari, M. Habibi, S. Rouhani, A note on an inequality between energy and Sombor index of a
graph, MATCH Communication in Mathematical and in Computer Chemistry, 90 (2023) 765-771.

[2] O. Arizmendi, J. F. Hidalgo, O. Juarez-Romero, Energy of a vertex, Linear Algebra and its Applica-
tions, 557 (2018) 464-495.

[3] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
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Abstract

The bipartite Ramsey number BR(H1,H2, . . . ,Hk) is the smallest positive integer b, such that each
k-decomposition of E(Kb,b) contains Hi in the i-th class for some i,1 ≤ i ≤ k. As another view of
bipartite Ramsey numbers, for the given two bipartite graphs H1 and H2 and a positive integer m, the
m-bipartite Ramsey number BRm(H1,H2), is defined as the least integer n, such that any subgraph of
Km,n say H, results in H1 ⊆H or H2 ⊆H. The size of BRm(K2,2,K3,3), BRm(K2,2,K4,4) for each m,
and the size of BRm(K3,3,K3,3) for some m, have been determined in several papers up to now. Also,
it is shown that BR(K2,2,K5,5) = 17. In this article, we compute the size of BRm(K2,2,K5,5) for some
m ≥ 2.

1 Introduction

In his 1930 on formal logic, F. Ramsey proved that if the t-combinations of an infinite class Γ are colored
by d distinct colors, then there exists a subclass F ⊆ Γ so that all of the t-combinations of F have the
same color. For t = 2, this is equivalent to saying that an infinite complete graph whose edges are colored
in d colors contains an infinite monochromatic complete subgraph. For given two graphs G and H the
Ramsey number R(G,H) is the minimum order of a complete graph such that any 2-coloring of the edges
must result in either a copy of graph G in the first color or a copy of graph H in the second color. All
such Ramsey numbers R(G,H) exist as well. Also, it is shown that R(G,H) ≤ R(Km,Kn) where ∣G∣ =m
and ∣H ∣ = n.

Beineke and Schwenk, introduced the bipartite version of Ramsey numbers [?]. For given bipartite
graphs H1,H2, . . .Hk, the bipartite Ramsey number BR(H1,H2, . . . ,Hk) is the smallest positive integer
b, such that each k-decomposition of E(Kb,b), contains Hi in the i-th class for some i,1 ≤ i ≤ k. Assume
that H1 and H2 are two bipartite graphs. For each m ≥ 1, the m-bipartite Ramsey number BRm(H1,H2),
is defined as the least integer n, such that any subgraph of Km,n say H, results in H1 ⊆ H or H2 ⊆ H.
The size of BRm(H1,H2) where H1 ∈ {K2,2,K3,3} and H2 ∈ {K3,3,K4,4}, have been determined in some
previous articles. In particular:
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Theorem 1.1. [1, 4] For each positive integer m ≥ 2, we have:

BRm(K2,2,K3,3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

does not exist, where m = 2,3,

15 where m = 4,

12 where m = 5,6,

9 where m = 7,8.

Theorem 1.2. [2, 3] For each positive integer m ≥ 2, we have:

BRm(K3,3,K3,3) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

does not exist, where m = 2,3,4,

41 where m = 5,6,

29 where m = 7,8.

Theorem 1.3. [5] For each positive integer m ≥ 2, we have:

BRm(K2,2,K4,4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

does not exist, where m = 2,3,4,

26 where m = 5,

22 where m = 6,7,

16 where m = 8,

14 where m ∈ {9,10 . . . ,13}.

In this paper, we compute the exact value of BRm(K2,2,K5,5) for some m ≥ 2 as follows.

Theorem 1.4. [Main results] For each m ∈ {1,2, . . . ,8}, we have:

BRm(K2,2,K5,5) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

does not exist, where m = 2,3,4,5,

40 where m = 6,

30 where m = 7,8.

2 Preparations

Assume that G[V,V ′] (or simply [V,V ′]), is a bipartite graph with bipartition sets V and V ′. Let
E(G[W,W ′]), denotes the edge set of G[W,W ′]. We use ∆(GV ) and ∆(GV ′) to denote the maximum
degree of vertices in part V and V ′ of G, respectively. The degree of a vertex v ∈ V (G), is denoted by
degG(v). For each v ∈ V (V ′), NG(v) = {u ∈ V ′(V ), vu ∈ E(G)}. For given graphs G, H, and F , we say
G is 2-colorable to (H,F ), if there is a subgraph G′ of G, where H ⊈ G′ and F ⊈ G′. We use G→ (H,F ),
to show that G is 2-colorable to (H,F ). To simplify, we use [n] instead of {1, , . . . , n}.

Alex F. Collins et al., have proven the following theorem [6].

Theorem 2.1. [6] BR(K2,2,K5,5) = 17.

Lemma 2.2. Suppose that (X = {x1, . . . , xm}, Y = {y1, . . . , yn}), where m ≥ 6 and n ≥ 10 are the partition
sets of K =Km,n. Let G is a subgraph of Km,n. If ∆(GX) ≥ 10, then either K2,2 ⊆ G or K5,5 ⊆ G.

Proof. Without loss of generality (W.l.g), let ∆(GX) = 10 and NG(x) = Y ′, where ∣Y ′∣ = 10 and K2,2 ⊈ G.
Therefore, ∣NG(x′) ∩ Y ′∣ ≤ 1 for each x′ ∈ X ∖ {x}. Since ∣X ∣ ≥ 6 and ∣Y ′∣ = 10, one can check that
K5,5 ⊆ G[X ∖ {x}, Y ′].
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3 Proof of the main results

To prove Theorem 1.4, we need the following theorems.

Theorem 3.1. For each m ∈ {2,3,4,5}, the number BRm(K2,2,K5,5) does not exist.

Proof. Suppose that m ∈ {2,3,4,5}. For an arbitrary integer t ≥ 5, set K =Km,t and let G be a subgraph
of K, such that G ≅ K1,t. Therefore, we have G ⊆ Km−1,t. Hence, neither K2,2 ⊆ G nor K5,5 ⊆ G. Which
means that for each m ∈ {2,3,4,5}, the number BRm(K2,2,K5,5) does not exist.

In the following theorem, we compute the size of BRm(K2,2,K5,5) for m = 6.

Theorem 3.2. BR6(K2,2,K5,5) = 40.

If ∆ = 8, then K5,5 ⊆ G.
If either ∣NG(xi) ∩ Y1∣ = 0 or NG(xi) ∩ Y1 = NG(xj) ∩ Y1 for some i, j ∈ {2, . . . ,6}, then K5,5 ⊆ G.

Theorem 3.3. BR7(K2,2,K5,5) = BR8(K2,2,K5,5) = 30.

Proof of Theorem 1.4. By combining Theorems 3.1, 3.2, and 3.3, we conclude that the proof of The-
orem 1.4 is complete.
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Abstract
Let G is a collection of some graphs and H be a simple graph. The G-free chromatic number χG(H)

of H is defined as the minimum number of subsets in a partition of the V (H) such that each subset
induces an G-free subgraph, i.e. contains no copy of any member of G. The list G-free χL

G(H) of H is the
minimum k such that there is an G-free L-coloring for any list assignment L of V (H) which ∣L(v)∣ ≥ k. A
graph H is said to be k-G-free-choosable if there exists an L-coloring for any list-assignment L satisfying
∣L(v)∣ ≥ k for each v ∈ V (H), and H[Vi] be G-free for each i = 1,2, . . . , L. So χG(H) ≤ χL

G(H) for any
graph H. A particular state, when G be a ollection of all caycle, χG(H) is said the vertex arboricity of
H and shown by α(H). We abtion χG(H ⊕Kn) = χL

G(H ⊕Kn), where G is a collection of graphs with
minimum degree δ, H is a fixed graph and n is sufficiently large. Also we show that χG(H) = χL

G(H) for
some graph H and some family G, and for each H, and H ′ we prove that χL

G(H⊕H ′) ≤ χL
G(H)+χL

G(H ′).

1 Introduction

For given graph H, and each vertex v of H, let L(v) be a set assigned to v, called a color list. An
L-coloring of H is a vertex-coloring c such that:

• For any v ∈ V (H), c(v) ∈ L(v).
• c(v) ≠ c(v′) for each vv′ ∈ E(H).

If there exists an L-coloring of H, then H is called L-colorable. A graph H is said to be k-choosable
if there exists L-coloring for any list-assignment L satisfying ∣L(v)∣ ≥ k for each v ∈ V (H). The choice
number χL(H) of H is the minimum integer k such that H is k-choosable. Note that χ(H) ≤ χL(H) for
any graph H, however, equality does not necessarily hold. The following particular case has been proved
by Ohba [1]:

Theorem 1.1. [1] If ∣V (H)∣ ≤ χ(H) +
√
2χ(H), then:

χL(H) = χ(H).

Theorem 1.2. [1] If ∣V (H)∣ + ∣V (G)∣ ≤ χ(H) + χ(G) +
√
2(χ(H) + χ(G)), then:

χL(H ⊕G) = χ(H) + χ(G).
∗Speaker
subjclass[2010]: 05C15
keywords: G-free-choosable, Conditional Coloring, Vertex Arboricity, L-G-free-colorable.
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1.1 Conditional Coloring

For a given graph H and a graphical property P , the conditional chromatic number χ(H,P ) of H, is the
smallest number k, such that V (H) can be decomposed into sets V1, V2 . . . , Vk, in which H[Vi] satisfies
the property P , for each 1 ≤ i ≤ k. This extension of graph coloring was stated by Harary in 1985 [?].
A particular state, when P is the property of being acyclic, χ(H,P ) is said the vertex arboricity of H.
The vertex arboricity of H is shown α(H) and is defined as the last number of subsets in a partition of
the vertex set of H, so that any subset induces an acyclic subgraph. Let G is a collection of some graphs
say G = {G1,G2, . . . ,Gn}. When P is the property that each color class contains no copy of Gi for each
i ∈ {1,2, . . . , n}, we write χG(H) instead of χ(G,P ), which is called the G-free chromatic number. Due
to this, we say a graph H has a k-G-free coloring if there exists a map g ∶ V (H)Ð→ {1, . . . , k}, such that
each of the color classes of g be G-free, see [5].

We use αL(H) to denote the list vertex arboricity of H, which is the least integer k, such that there
exists an acyclic L-coloring for each list assignment L of H, in which k ≤ ∣L(v)∣. So, α(H) ≤ αL(H) for
any graph H, see [3, 4]. It has been proved that:

Theorem 1.3. [2] If ∣V (H)∣ ≤ 2α(H) +
√
2α(H) − 1, then αL(H) = α(H).

Assume that each vertex v ∈ V (H) is assigned a set L(V ) of colors, told a color list. Set c(L) = {c(v) ∶
v ∈ V (H)}. An L-coloring c is called G-free, such that:

• c(v) ∈ L(v) for each v ∈ V (H).
• H[Vi] is G-free for each i = 1,2, . . . , L.

If there exists an L-coloring of H, then H is said to be L-G-free-colorable. A graph H is said k-G-free-
choosable if there exists an L-coloring for any list-assignment L satisfying ∣L(V )∣ ≥ k for each v ∈ V (H),
and H[Vi] be G-free for each i = 1,2, . . . , L. For given two graphs H and , the χL

G(H) of H is the minimum
integer k, if H be k-G-free-choosable where G is a collection of some graphs say G = {G1,G2, . . . ,Gn}.
When G = {G} we use χG(H) instead to χG(H).

2 Main results

In this article, we prove the subsequent results.

Theorem 2.1. Assume that G be a family of graph with minimum degre δ. Also let H and H ′ are two
graphs, where, H is a k-G-free choosable, and H ′ is a k′-G-free choosable. Suppose that S and S′ be the
maximum subsets of V (H) and V (H ′), respectively, such that H[S] and H ′[S′] are G-free. In this case,
if either (∣S′∣ − 1)(∣V (H)∣ + ∣S′∣) ≤ ∣S′∣δ(k + 1) or (∣S∣ − 1)(∣V (H ′)∣ + ∣S∣) ≤ ∣S∣δ(k′ + 1), then H ⊕H ′ is a
(k + k′)-G-free-choosable, that is, χL

G(H ⊕H ′) ≤ χL
G(H) + χL

G(H ′) = k + k′.

Theorem 2.2. Let G is a collection of some graphs say G = {G1,G2, . . . ,Gn} where for each i we have

δ(Gi) = δ. Also let H be a graph. If ∣V (H)∣ ≤ δχG(H) +
√
δχG(H) − (δ − 1), then χL

G(H) = χG(H).

Theorem 2.3. For each two connected graphs H and G, we have:

χL
G
(H) ≤ ⌈∆(H)

δ(G)
⌉ + 1.

Theorem 2.4. Assume that G is a collection of all graphs with minimum degre d. For each arbitrary graph
H, there exists a non-negative integer n′, such that for each n ≥ n′ we have χG(H ⊕Kn) = χL

G(H ⊕Kn).

3 Proof of the Main results

Before proving the main theorems, we need some basic results. Suppose that H and G are two graphs, and
let L be a list-assignment color to V (H). Assume that S = {v1, v2, . . . , vm} ⊆ V (H). Set L(S) = ∪i=mi=1 L(vi).
Now, we have the following lemma.
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Lemma 3.1. Let H and G be two graphs with δ(G) = δ. If H is not L-G-free colorable, then there exists
a subset S ⊆ V (H), such that ∣S∣ > δ∣L(S)∣.

To prove the following lemma, we use Ohbas notion.

Lemma 3.2. Suppose that H, H ′, and G are three graphs, where δ(G) = δ, ∣V (H ′)∣ = n, and H ′ is G-free,
i.e G ⊈H ′. If H be k-G-free choosable, and (n− 1)(∣V (H)∣+n) ≤ nδ(k + 1), then H ⊕H ′ is (k + 1)-G-free
choosable, that is χL

G(H ⊕H ′) ≤ χL
G(H) + 1 = k + 1.

With an argument similar to the proof of the Lemma 3.3, it is easy to check the correctness of the
following lemma.

Lemma 3.3. Let G is a collection of some graphs with minimum degre δ. Suppose that H, H ′ are
two graphs, where ∣V (H ′)∣ = n, and H ′ is G-free, i.e G ⊈ H ′ for each G ∈ G. If H be χL

G(H)-G-free
choosable, and (n− 1)(∣V (H)∣+n) ≤ nδ(χL

G(H)+ 1), then H ⊕H ′ is (χL
G(H)+ 1)-G-free choosable, that is

χL
G(H ⊕H ′) ≤ χL

G(H) + 1.

By using Lemma 3.3, we can prove the first main result, namely Theorem 2.1.

Lemma 3.4. Let G is a collection of some graphs with minimum degre δ. Also suppose that H be a graph
with ∣V (H)∣ = n. Then:

χL
G(H) ≤ ⌈

n

δ
⌉

Lemma 3.5. Suppose that H and G are two graphs, where δ(G) = δ. Assume that S be a maximum
G-free subset of H. Also let ∣S∣ = n1. If (n1 − 1)∣V (H)∣ ≤ n1δχG(H). Then:

χL
G(H) = χG(H).
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Abstract

Let R be a commutative ring. The annihilator graph of R denoted by AG(R) is a graph whose
vertices are the nonzero zero-divisors of R and two distinct vertices x and y are adjacent if and only
if Ann(x) ∪Ann(y) ⊂ Ann(xy). In literatures, it is shown that diam(AG(R)) ≤ 2 and gr(AG(R)) ≤ 4
provided that it has a cycle. In this paper, among other things we introduce a special ring for which
the diameter and the girth of the annihilator graph are exactly equal to two and three, respectively.

1 Introduction

In recent decades, graph theoretical tools are used extensively to study rings structures. Therefore, the
study of graphs associated with rings has became one of the active area in this field. There are a lot of
papers, which apply combinatorial methods to obtain algebraic results in ring theory, see [2]. Let R be
a commutative ring with nonzero identity. The annihilator graph of R introduced in [2] and studied in
some literatures, for example, see [1]. This graph denoted by AG(R) and its vertices are the nonzero
zero-divisors of R and two distinct vertices x and y are adjacent if and only if Ann(x)∪Ann(y) ⊂ Ann(xy),
where Ann(x) = {r ∈ R ∶ rx = 0}. Let X be a set and let P(X) denote the power set of X. In this paper,
we study the annihilator graph of the ring (P(X),∆,∩) with the vertex set Z(P(X))∗ = P(X) ∖ {∅,X}
and two distinct vertices A and B are adjacent if and only if Ann(A) ∪Ann(B) ⊂ Ann(A ∩B). We show
that for ∣X ∣ ≥ 3, diam(AG(P(X))) = 2 and gr(AG(P(X))) = 3. Moreover, we determine the degree of all
vertices also, we determine the domination, the clique and the chromatic number of this graph.

Let G = (V (G),E(G)) be a simple graph, where V (G) and E(G) are called vertex set and edge set of
G, respectively. A clique of G is a complete subgraph of G and the number of vertices in a largest clique
of G denoted by ω(G), is called the clique number of G. The domination number, denoted by γ(G) is the
size of a smallest dominating set of G and the chromatic number of G denoted by χ(G), is the minimal
number of colors, which can be assigned to the vertices of G in such a way that every two adjacent vertices
have different colors. For notations and terminologies not given in this paper, the reader is referred to [3].

∗Speaker
subjclass[2000]: 13A70, 05C25
keywords: Annihilator graph, Domination number, Chromatic number

157



Y. Sadatrasul, Sh. Payrovi

2 The annihilator graph of the ring P(X)
Let X be a set and P(X) denote the power set of X, P(X) = {A ∶ A ⊆ X}. It is easy to see that
(P(X),∆,∩) is a commutative ring with identity, where by A∆B we mean the symmetric difference
between two sets A and B. In this section we study the annihilator graph of the ring P(X). For
A ∈ P(X) it is easy to see that Ann(A) = {B ∈ P(X) ∶ A ∩B = ∅} = P(A′).

Lemma 2.1. Let X be a set and P(X) be the power set of X. Then two distinct vertices A,B in
AG(P(X)) are adjacent if and only if A /⊆ B and B /⊆ A.

Below are the annihilator graphs for ∣X ∣ = 3 and ∣X ∣ = 4.

Theorem 2.2. Let X be a set and P(X) be the power set of X. Then AG(P(X)) is connected graph
and diam(AG(P(X))) ≤ 2. Moreover, if AG(P(X)) contains a cycle, then gr(AG(P(X))) = 3.

We next determine when AG(P(X)) has a vertex adjacent to every other vertex.

Theorem 2.3. Let X be a set and P(X) be the power set of X. Then AG(P(X)) has a vertex adjacent
to all vertices if and only if ∣X ∣ = 2. In particular, AG(P(X)) is a complete graph if and only if ∣X ∣ = 2.

Theorem 2.4. Let X be a finite set, ∣X ∣ = n ≥ 1 and P(X) be the power set of X. If A is a vertex of
AG(P(X)) with k or n − k elements, then deg(A) = 2n − 2n−k − 2k + 1.

In the following we determine the domination, clique and chromatic number of AG(P(X)).

Theorem 2.5. Let X be a set with more that two elements and P(X) be the power set of X. Then the
domination number of AG(P(X)), γ(AG(P(X))) = 2.

Theorem 2.6. Let X be a finite set, ∣X ∣ = n ≥ 1 and P(X) be the power set of X. Then {A ⊆X ∶ ∣A∣ =
k,1 ≤ k < n} is a clique of AG(P(X)) and ω(AG(P(X))) = (n

k
), where k = n/2 or k = (n + 1)/2.

Proof. It is easy to see that Ωk = {A ⊆X ∶ ∣A∣ = k} is a clique of AG(P(X)) for all 1 ≤ k < n. Moreover,
if B ⊆ X and ∣B∣ ≠ k, then Ωk ∪ {B} is not a clique since either B ⊆ A or A ⊆ B, for some A ∈ Ωk, thus A
is not adjacent to B and Ωk ∪ {B} is not a clique.

Now, assume that Ω is a clique of AG(P(X)) and k = max{∣Ω ∩ Ωt∣ ∶ 1 ≤ t < n}. Thus Ω = Ω′k ∪
{A,B,C,⋯}, where Ω′k = Ω∩Ωk. We show that ∣Ω∣ ≤ ∣Ωk ∣. For A ∈ Ω we have two cases: (i) if ∣A∣ > k, then
there is no any subset of A with k elements in Ω′k; (ii) if ∣A∣ < k, then there is no any subset of X with k

elements in Ω′k which contains A. The number of subsets of A with k elements is (∣A∣
k
) and the number of

subsets of X with k elements which contains A is (n−∣A∣
k
). In any cases the number of these subsets of X

is more than one. Thus ∣Ω∣ ≤ ∣Ωk ∣ the result follows.

Theorem 2.7. Let X be a finite set, ∣X ∣ = n ≥ 1 and P(X) be the power set of X. Then the chromatic
number of AG(P(X)) is χ(AG(P(X))) = (n

k
), where k = n/2 or k = (n + 1)/2.
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Proof. In view of Theorem 2.6, Ωk = {A ⊆ X ∶ ∣A∣ = k, k = n/2 or k = (n + 1)/2} is a maximal clique of
AG(P(X)) so (n

k
) ≤ χ(AG(P(X))), where k = n/2 or k = (n+1)/2. Assume that A is an arbitrary vertex

of AG(P(X)). Since Ωk is a maximal clique so there is a vertex B in Ωk such that A and B are not
adjacent. Hence, A and B have the same color. Now, assume that C is a vertex of AG(P(X)) which is
adjacent to A. We have to show that A and C have different colors. We may assume that C /∈ Ωk. Thus
either n/2 < ∣C ∣ or ∣C ∣ < n/2. In the first case there exist ( ∣C∣

n/2) ≥ 2 subsets of C in the clique Ωk which

C is not adjacent to them and therefore C can be have the same color as one of them other than B. So
A and C have different colors. If ∣C ∣ < n/2, then there exist (n−∣C∣

n/2 ) ≥ 2 subsets of X in the clique Ωk

contains C so C is not adjacent to them and therefore can be have the same color as one of them other
than B. So A and C have different colors. Hence, in each cases A and C have different colors. Therefore,
χ(AG(P(X))) ≤ ∣Ωk ∣, where k = n/2 or k = (n + 1)/2.

Corollary 2.8. Let X be a finite set and P(X) be the power set of X. Then AG(P(X)) is a weakly
perfect graph.
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Abstract

One of the famous problem in elementary combinatorics is: count the number of ways of distributing
n identical objects into k distinct labeled boxes. In this study, we aim to present a novel interconnection
topology called the Diophantine Cube. In spite of its symmetric and relatively sparse interconnections,
the Diophantine Cube has shown to posess attractive structures. Since it can be embedded as a subgraph
in Hamming Graphs, the Diophantine cube may find applications in fault-tolerant computing.

1 Introduction

There are a large number of graphs whose principles of structure are designed based on strings of length
k. One of these interesting problems is the famous (generalized) Tower of Hanoi puzzle [1]. In its general
form the puzzle consists of p ≥ 3 vertical pegs numbered 1,2, . . . , p and n (n, p ∈ N) discs of different size
numbered 1,2, . . . , n , where the discs are ordered by size , disc 1 being the smallest one. A state, that is,
a distribution of discs on pegs, is called regular . Starting from a perfect state, a regular state where all
discs are on one peg . A legal move is a transfer of topmost disc of a peg to another peg such that no disc
is moved onto smaller one.The aim of the game is to transfer all discs from one perfect state to another
in the minimum number of legal moves.
A regular state can be represented by a unique n−string p1p2 . . . pn, here pj is the peg where disc j, is
laying. Conversely, any such n-string determines a unique regular state. To see this , we first recall that
the coordinates define the discs on each peg. Scince the discs on each peg are ordered by their sizes in a
regular state. We conclude that there are pn regular state. We consider the set of all regular state n-string
as the vertex set of Hanoi Graph Hn

p and two vertices are adjacent if and only if one can obtained from
each other by a legal move of a single disc [2].
Now, in the Tower of Hanoi problem, if we consider all discs are the same diameter and to be identical,
and suppose we consider the pegs as labbled different boxes. In this article, we introduce a graph whose
set of vertices are codes of length k that are obtained from an important combinatorial structure. Graphs
whose vertices are strings, each of which represents a distribution of n identical objects in k distinct boxes.
Since, we know that every way of distribution of a n similar objects in k distinct boxes is equivalent to a
solution of the Diophantine equation x1 + x2 + . . . + xk = n. For this purpose, we call the obtained graphs
a distribution graph or Diophantine graph or simply a D −Graph.

∗Speaker
subjclass[2010]: 05C12, 05C78, 11B37
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160



B. S. Matykolaei

2 Diophantine Graphs Dn
k

A convenient and direct representation for the Distribution Problem is graph representation. In a
Distribution Problem every possible state of the Problem is represented by a vertex. Two vertices are
adjacent in the Diophantine Graph if their corresponding states differ by one move. In this section we
define the Diophantine graph and investigate some basic parameter of it. But, before this we need the
following definitions. Recall that the Hamming distance between two binary strings α and β is the number
H(α,β) of bits, where α and β differ [2]. Now, we generalize this concept to Diophantine codes.

Definition 2.1. Let n, k ≥ 1 are positive integers.The Diophantine graph Dn
k of kind (n, k) is the

graphDn
k= (V n

k ,E
n
k ), where V n

k = {a1a2 . . . an ∶ 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k},that is the set of all Dio-
phantine code of the kind (n, k) and (α,β) ∈ En

k if and only if H(α,β) = 1.
Example 2.2. Let k = 2 and n = 3, then V 3

2 = {111,112,122,222} and (3,2)−Diophantine Graph D3
2 is

isomorphic to P4. Figure 1(b).

For each n ≥ 1, one can simply show that, Dn
2 ≃ Pn+1.

Now, we want to draw the Diophantine graph corresponding to the non-negative integer solutions of the

Figure 1: Diophantine Graphs

equation x1+x2+x3 = 1. We want to show each solution of the equation by 1-string over the set {1,2,3}.The
solutions of this equation are x1 = 1, x2 = x3 = 0, which correspond to the 1-string a1 = 1; or the solution
x2 = 1, x1 = x3 = 0 where correspond to the 1-string a1 = 2; and the last solution x3 = 1, x1 = x2 = 0, which
correspond to the 1-string a1 = 3. Figure 1(c).
Therefore, we have three distinct sequences of length 1 which, each pair is different in one component and
their corresponding vertices in Diophantine graph are adjacent. It is a simple problem in the literature of
combinatorics (cf. [3]) to see that, each distribution of n identical objects in k labeled distinct boxes is
corresponding to a solution of the Diophantine equation x1 +x2 + . . .+xk = n, and hence corresponding to
an increasing n−string over the set {1,2, . . . , k}. So, we have the following lemma:

Lemma 2.3. ∣V n
k ∣ = (

n+k−1
k−1 ).

Now, we find some structural properties of the Diophantine graphs. Since each vertex of the Diophan-
tine graph corresponds to a solution of the Diophantine linear equation x1 + x2 + . . . + xk = n.
Theorem 2.4. Let n ≥ 1 and k ≥ 1 be positive integers. Let α = a1a2 . . . an is an arbitrary vertex of the
Diophantine graph Dn

k , then
degDn

k
(α) = (an − a1) + (k − 1)

.

In theorem 2.4 we show that the degree of each vertices a1a2 . . . an of (n, k)−Diophantine Graphs,
dependents only a1 and an, by this fact and the hand shaking theorem [2], we can find the number of

edges of the (n, k)−Diophantine Graphs D
(k)
n .

Theorem 2.5. Let q
(k)
n = ∣E(k)n ∣ the number of edges of the Diophantine Graph D

(k)
n = (V (k)n ,E

(k)
n ), then

q(k)n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k
2
) if n = 1

(k−1)k(k+1)
3

if n = 2

1
2 ∑

k−1
i=1 ∑

k−i
j=1 (

n+j−2
j
)j + 1

2
(n+k−1

k−1 )(k − 1) if n ≥ 3
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3 Coloring the Diophantine Graphs Dn
k

In this section, we use this labbeling, which is key to coloring the vertices. It is customary to number the
boxes 0,1,. . . ,k − 1.. We are now ready to prove a new result. As, induced subgraph < {11 . . .1an∣1 ≤ an ≤
k} > is isomorphic to Kk, thus χ(Dn

k ) ≥ k. To see that k colors suffice, color the vertex labeled a1a2 . . . an
by the sum of its box numbers modulo k. That is

f(a1a2 . . . an) = a1 + a2 + ⋅ ⋅ ⋅ + an mod(k).

To check that f is a k-coloring, observe that two vertices of Dn
k are adjacent if and only if they differ in

exactly one place. Hence, we have the following theorem:

Theorem 3.1. Let k ≥ 2 and n ≥ 1, then χ(Dn
k ) = k.

.

4 Connectivity

In this section, we want to show that for each (n, k)− Diophanteen graps Dn
k are connected graphs where

n, k ≥ 1 are positive integers.

Theorem 4.1. Let n, k ≥ 1 are positive integers. Thus the Diophanteen graph Dn
k is connected.

Lemma 4.2. Let A and B are two arbitrary vertices of the graph Dn
k . Thus, there is a corner vertex i

such that, d(A, i) ≥ d(A,B).

Thus, for calculating the eccentricity of a vertexA, it is sufficient to only calculate its distance from
the Corner vertices. So,

ecc(A) =max{d(A, i) ∶ i = 1,2, . . . , k}.
Since, the corner vertices 1 = 11 . . .1 and k = kk . . . k are differ on n coordinates, then diam(DN

k ) = n.
Thus, we have the following lemma.

Lemma 4.3. For each positive integers n ≥ 1and k ≥ 1, the diameter of the Diophanteen graph Dn
k is n.

By lemma 4.2, for calculating the eccentricity of a vertexA, it is sufficient to only calculate its distance
from the Corner vertices. Indeed, for each vertex A ∈Dn

k , we have

ecc(A) =max{d(A,X) ∶X ∈ V (Dn
k )}

=max{d(A, i) ∶ i ∈ {1,2, . . . , k}}
=max{n − ni ∶ i = 1,2, . . . , k}

where ni = ∣Mi(A)∣. Let A is a vertex of the graph Dn
k , then by lemma 4.2 there is a corner vertex

i, such that ecc(A) = n − ni. If ni < ⌊nk ⌋, then n − ni > n − ⌊nk ⌋. But, eccentericity of the vertex

B =
n1

1 . . .1

n2
2 . . .2 . . .

nk
k . . . k is n − ⌊n

k
⌋ where, ni ≥ ⌊nk ⌋ for i = 1,2, . . . , n. Hence, the vertex A can not be a

centeral vertex. Thus, we have the following lemma.

Lemma 4.4. rad(Dn
k ) = n − ⌊

n
k
⌋.

Now, by Lemma 4.2 and Lemma 4.4 one can consruct many graphs with given eccentericity.

Theorem 4.5. Let n ≥ 1 and k ≥ 1 are positive integers then, the center Z(Dn
k ) is an induced subgraph

of the Diophanteen graph Dn
k of order (r+k−1

k−1 ) where r = n − k⌊
n
k
⌋.

Corollary 4.6. Let n ≥ 1 and k ≥ 1 are positive integers. then,

a) If n < k then Z(Dn
k ) ≅Dn

k that is, the Diophanteen graph is self center.

b) If k∣n then, the Diophanteen graph Dn
k is mono center that is Z(Dn

k ) ≅K1 with center V (Z(Dn
k )) =

{
m

1 . . .1

m

2 . . .2 . . .

m

k . . . k} where m = n

k
.
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Abstract

A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent
to a vertex in S. Motivated by a question in [3], which states that:
“Is it true that every connected cubic graph containing a 3-cycle has two vertex disjoint total dominating
sets?”
We give a negative answer to this question. Moreover, we prove that if we replace 3-cycle with 4-cycle
the answer is affirmative. This implies every connected cubic graph containing a diamond (the complete
graph of order 4 minus one edge) as a subgraph can be partitioned into two total dominating sets, a
result that was proved in 2017.

Joint Work with: S. Akbari, M. Azimian, A. Fazli Khani, E. Zahiri

1 Introduction

Throughout this talk, all graphs are simple that is with no loop and multiple edges. Let G be a graph.
We denote the vertex set and the edge set of G by V (G) and E(G), respectively. A total dominating set
in a graph G is a set S ⊆ V (G) such that every vertex in G is adjacent to a vertex in S. The study of
cubic graphs whose vertex set can be partitioned into two total dominating sets is an attractive topic and
many authors have investigated this problem, for instance, see [1], [3] and [6]. A k-coloring of a graph
G is an assignment of colors from the set [k] = {0, . . . , k − 1} to the vertices of G. A k-coupon coloring
of a graph G without isolated vertices is a k-coloring of G such that the neighborhood of every vertex of
G contains vertices of all colors from [k]. We say that a vertex has the coupon property if all k colors
appear in the neighborhood of that vertex. The concept of k-coupon coloring of graphs has been studied
by several authors, for instance, see [2], [4] and [5].
The open neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices adjacent to v. For
any S ⊆ V (G), G[S] denotes the subgraph of G induced by S. A {1,2}-factor is a spanning subgraph
of G in which each component is either 1-regular or 2-regular. We use Cn and Pn, for the cycle and the
path of order n, respectively. Also, Cn is called an n-cycle. A vertex v is called a good vertex or a bad
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vertex, if it has or has not the coupon property, respectively. It is not hard to see that a 2-coupon coloring
of a graph is equivalent to the vertex partitioning of a graph into two total dominating sets. In [3] the
following interesting question was proposed:
“Is it true that every connected cubic graph containing a 3-cycle has two vertex disjoint total dominating
sets?”
Here, we construct a connected cubic graph of order 60 containing a 3-cycle whose vertex set cannot be
partitioned into two total dominating sets. The complete graph of order 4 minus one edge is called a
diamond. In [3] it is shown that the vertex set of a cubic graph containing a diamond as a subgraph can
be partitioned into two total dominating sets. Here, we strengthen this result by showing that the vertex
set of every cubic graph containing a 4-cycle can be partitioned into two total dominating sets.

2 Main results

In this section, we state some of new results on the concept of 2-coupon coloring of cubic graphs.
In this talk, we denote the Heawood graph by H. First we prove the following two lemmas.

Lemma 2.1. In any 2-coloring of H, there are at least two bad vertices.

Lemma 2.2. Let e = uv ∈ E(H). If there is a 2-coloring for H − e such that all vertices in V (H)/ {u, v}
are good, then u and all vertices in NH−e(v) have the same color.

Using the two previous lemmas, we prove the following theorem.

Theorem 2.3. There exists a connected cubic graph containing a 3-cycle with no 2-coupon coloring.

Now, we have the following corollary.

Corollary 2.4. There exists a connected cubic graph containing a triangle that has no two vertex disjoint
total dominating sets.

Theorem 2.5. Let G be a connected cubic graph and S ⊊ V (G). If G[S] has a 2-coupon coloring, and
G/S has a {1,2}-factor, then G has a 2-coupon coloring.

Using Theorem 2.5 we have the following corollary.

Corollary 2.6. If G is a connected cubic graph containing a 4-cycle, then G has a 2-coupon coloring.

Remark 2.7. For every positive integer r (r ≥ 3), not divisible by 4, there exists a connected cubic graph
that contains an induced r-cycle and has no 2-coupon coloring.
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Abstract

Let G be a graph and S ⊆ V (G). The self-loop graph of GS is a graph obtained by G by attaching a

self-loop at each vertex in S. The energy of a self-loop graph is defined as E(GS) = ∑n
i=1 ∣λi(GS) − ∣S∣n ∣.

It was conjectured that for every graph of order at least 2, there exists a subset S ⊆ V (G) such that
E(GS) > E(G). In this paper, we prove this conjecture. Also we show that if G is a bipartite graph of
odd order, then for every ∅ ≠ S ⫋ V (G), we have E(GS) > E(G). It is shown that for every graph G
with nullity r, there is S ⊆ V (G) such that ∣S∣ = r and the adjacency matrix of GS is non-singular.

Joint work with: S. Akbari, S. Küçükçifçi

1 Introduction

The energy of a graph G of order n is defined as

E(G) =
n

∑
i=1
∣λi(G)∣.

The graph obtained from G by attaching a self-loop at each vertex in S ⊆ V (G) is called the self-loop
graph of G at S and denoted by GS . Also, we denote S as the complement of S. Define JS ∈M∣V (G)∣(C)
such that (JS)i,j = 1 if i = j and vi ∈ S, and (JS)i,j = 0, otherwise. Thus we have A(GS) = JS +A(G). The
characteristic polynomial and the eigenvalues of GS are the characteristic polynomial and the eigenvalues
of A(GS), respectively. Since A(GS) is a real symmetric matrix, all eigenvalues of A(GS) are real and
they are denoted by λ1(GS) ≥ λ2(GS) ≥ ⋅ ⋅ ⋅ ≥ λn(GS). In [2], the energy of GS of order n is defined as

E(GS) =
n

∑
i=1
∣λi(GS) −

∣S∣
n
∣.

In [2], it was conjectured that for every non-empty proper subset S of V (G), we have E(GS) > E(G).
This was disproved in [3] by presenting some counterexamples such that E(GS) < E(G). Instead, we prove
the following conjecture, which was proposed in [1].
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Conjecture 1.1. For every graph G of order at least 2, there exists S ⊆ V (G) such that E(GS) > E(G).

Also, in [1] it was shown that if G is a bipartite graph and S is an arbitrary set of V (G), then
E(GS) ≥ E(G). Here, we will prove that if G is a bipartite graph of odd order and ∅ ≠ S ⫋ V (G), then
the inequality is strict.

2 Main results

In this section, we state some of new results on the the energy of graphs with self-loops.

Theorem 2.1. Let G be a graph. Then the two following statements hold:
(i) If S ⊆ V (G), then E(GS) ≥ E(G) or E(GS) ≥ E(G).
(ii) For every integer r, 0 ≤ r ≤ n, there exists S ⊆ V (G) such that ∣S∣ = r and E(GS) ≥ E(G).

Theorem 2.2. For every graph G, if ∅ ≠ S ⫋ V (G) and the adjacency matrix of the subgraph of G induced
by S is singular, then E(GS) > E(G) or E(GS) > E(G).

Corollary 2.3. For every graph G of order at least 2, there exists S ⊆ V (G) such that E(GS) > E(G).

Theorem 2.4. Let G be a graph of order n. Then for every integer r, 0 < r < n, there exists S ⊆ V (G)
such that ∣S∣ = r and E(GS) > E(G).

Theorem 2.5. Let G be a graph with a singular adjacency matrix and ∅ ≠ S ⫋ V (G), then either
E(GS) > E(G) or E(GS) > E(G).

Corollary 2.6. Let G be a bipartite graph of odd order and ∅ ≠ S ⫋ V (G), then E(GS) > E(G).

Corollary 2.7. For every graph G of order at least 2, there exists S ⊆ V (G) such that E(GS) > E(G).

Theorem 2.8. For every graph G with null(G) = r, there exists S ⊆ V (G) such that ∣S∣ = r and A(GS)
is non-singular.

Corollary 2.9. Let G be a regular graph. Then for every S ⊆ V (G), GS is non-hypoenergetic.

Acknowledgement. This is joint work with Prof. Saieed Akbari and Prof. Selda Küçükçifçi.
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Abstract

In this paper, we consider the degree saving group of a simple graph G, denoted by Γd(G). Then,
we characterize the group G for which the vertex group is equal to Γd(G), and the group G for which
the total group is isomorph to Γd(G).

any two of these groups are isomorphism.

1 Introduction

Let G = (V (G),E(G)) be a simple graph, i.e., finite undirected graphs with no loops and no multiple
edges. Each member of V (G)∪E(G) is called an element of G. We say two elements of G are associated
if they are either adjacent or incident. The neighborhood of a vertex ν ∈ V (G), denoted by NG(ν), is the
set consisting of all vertices of G which are adjacent to ν. The closed neighborhood of ν ∈ V (G) is defined
as NG(ν) ∶= NG(ν) ∪ {ν}. The degree of ν ∈ V (G) is denoted by deg(ν).

The set of all permutations on V (G) which preserve adjacency under composition forms a group,
denoted by Γv(G) and called the vertex group of G. Also, the set of all permutations of elements of G
which preserve association forms another group, denoted by Γt(G) and named the total group of G. To
study different properties and examples of Γv(G) and Γt(G), we can refer to [2] and [1], respectively. In
this article, we consider the third type of permutation groups and introduce its interrelations with Γv(G)
and Γt(G).

2 Main results

Definition 2.1. The degree saving group of G, denoted by Γd(G), consists all permutations on V (G)
with the property that

deg(ν) = deg(φ(ν)), ∀ν ∈ V (G), ∀φ ∈ Γd(G).

Owing to the definition, it is clear that Γv(G) is a subgroup of Γd(G). The next two theorems
characterize graphs G for which Γd(G) = Γv(G). In the first theorem we consider disconnected graphs.
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Theorem 2.2. Let G be a disconnected graph. Then Γd(G) = Γv(G) if and only if no two nontrivial
components of G have vertices of the same degree and for every component H of G we have Γd(H) =
Γv(H).

Sketch of proof: If Gd(G) = Gv(G) and there exist two nontrivial components H1 and H2 of G with
vertices v1 ∈H1 and v2 ∈H2 with deg(v1) = deg(v2), then we consider the permutation φ ∶ V (G)→ V (G),
defined by

φ(ν) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ν if ν ∈ V (G) ∖ {ν1, ν2},
ν2 if ν = ν1,
ν1 if ν = ν2.

Clearly φ ∈ Gd(G) ∖ Gv(G), and the necessary is proved. For prove the sufficiency, we consider an
arbitrary permutation Gd(G). Since mapsverticesofnontrivialcomponentHtoitself, therestrictionof to
V (H) saves adjacency. Hence, Gv(G), and the proof is complete.

According to the Theorem 2.2, we must confine ourselves to connected graphs. The proof of the
following theorem is longer than can be presented here, and we refrain from stating it.

Theorem 2.3. Suppose that His a connected graph. Then Γd(H) = Γv(H) if and only if

(A) equidegree vertices of H two of which are disjoint are all mutually disjoint and all have the same
neighborhood, and

(B) equidegree vertices of H two of which are adjacent are all mutually adjacent and all have the same
closed neighborhood.

The following corollary is immediate from Theorem 2.3. Among regular graphs G, the complete
graph and its complement are the only graphs for which Γd(G) = Γv(G).

Theorem 2.4. Among trees having 2 or more vertices, the star graph K1,n is the only tree for which
Γd(K1,n) = Γv(K1,n).

Sketch of proof: Let T be a tree whose diameter is greater than 2 and Γd(T ) = Γv(T ). Then T
contains two nonadjacent vertices of degree one, and this contradicts Theorem 2.3. Thus diameter of T
is equal to 2, and the result is proved.

Theorem 2.5. Suppose that Γd(G) = Γv(G) and v is a cut-vertex of G. Then

deg(v′) ≠ deg(v) ∀v′ ∈ V (G) ∖ {v}.

Sketch of proof: Assume to the contrary that there exists a vertex v′ ≠ v such that degv′ = degv.
Then, Theorem 2.2 concludes that v and v′ belong to the same component H of G. Suppose that u and
w are two vertices of H adjacent to v which lie in two different components of H ∖{v}. If v′ ∈ {u,w}, that
is, if, say, v′ = u, then uw ∈ E(G) contradicts the fact that v is a cut vertex of G. Hence, we assume that
v′ ∉ {u,w}. Then v′ is adjacent to both u and w and again we contradict the fact that v is a cut-vertex
of G. This completes the proof.

The next theorem deals with Γv(G) and Γt(G).

Theorem 2.6. ([1, Theorem 3]) Let G be a nontrivial graph. Then, Γv(G) and Γt(G) are isomorphic if
and only if neither a component of G is a complete graph nor a cycle.

The following result, deals with Γd(G) and Γt(G), is immediate from Theorems 2.3 and 2.6.

Theorem 2.7. Let G be a nontrivial connected graph. Then, Γd(G) and Γt(G) are isomorphic if and
only if G is not a complete graph and the statements (A) and (B) hold.

Remark 2.8. Since the elements of Γd(G) are permutations on V (G) and the elements of Γt(G) are
permutations on V (G) ∪ E(G), they can only be isomorph, but they cannot be exactly equal. But, the
elements of Γd(G) and Γv(G) are permutations on V (G), and they can be equal.
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Abstract

We say that a number α has a representation with respect to the numbers α1, ..., αn, if the non-
negative integers λ1, ..., λn be found so that α = λ1α1 + ... + λnαn. The largest natural number that
does not have a representation compared to the numbers α1, ..., αn is called the Frobenius number and
is denoted by the symbol g(α1, ..., αn). In this paper, we present a new algorithm to calculate the
Frobenius number.

1 Introduction

Let α1, ..., αn (n ≥ 2) be positive integers with gcd(α1, ..., αn) = 1. Finding the largest positive integer N
such that the Diophantine equation α1x1 +α2x2 + ... +αnxn = N has no solution in non-negative integers
is known as the Frobenius problem. Such the largest positive integer N is called the Frobenius number
of α1, ..., αn. Various results of the Frobenius number have been studied extensively.

The Frobenius Problem is well known as the coin problem that asks for the largest monetary amount
that cannot be obtained using only coins in the set of coin denominations which has no common divisor
greater than 1. This problem is also referred to as the McNugget number problem introduced by Henri
Picciotto. The origin of this problem for n = 2 was proposed by Sylvester (1884), and this was solved by
Curran Sharp (1884), see [3, 4]. Curran Sharp [3] in 1884 proved that g(α1, α2) = α1α2 − α1 − α2.

Let α1, ..., αn be positive integers whose greatest divisor is equal to one, in other words

gcd(α1, ..., αn) = 1.

If S =< α1, ..., αn > is the semigroup generated by α1, ..., αn, then finding g(S) is a problem and therefore
finding the bounds for g(S), whenever we have a certain sequence of numbers, [1] is of interest. For
example, if S is an arithmetic sequence with relative value d, then we have [2]:

g(a, a + d, a + 2d, ..., a + kd) = a⌊a − 2
k
⌋ + d(a − 1).

Fibonacci sequence is a recursive sequence Fn = Fn−1 + Fn−2, n ≥ 3 with F1 = F2 = 1.
The following lemmas are needed:
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Lemma 1.1. If i ∤ l then gcd(Fi, Fl) = 1.

Lemma 1.2. For every integer l ≥ i + 2, we have g(Fi, Fi+1, Fl) = g(Fi, Fi+1).

Assuming gcd(Fi, Fj , Fl) = 1 for the triplet 3 ≤ i < j < l, calculating g(Fi, Fj , Fl) has been considered.

Theorem 1.3. [5] Suppose that i, k ≥ 3 are integers and r = ⌊Fi−1
Fi
⌋. In this case

g(Fi, Fi+2, Fi+k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Fi − 1)Fi+2 − Fi(rFk−2 + 1); If r = 0 or r ≥ 1 and
Fk−2Fi < (Fi − rFk)Fi+2,

r(Fk − 1)Fi+2 − Fi((r − 1)Fk−2 + 1) otherwise

2 Main results

We start this section with the following easy theorem:

Theorem 2.1. For the numbers α1 < α2 < ... < αn, we have

g(α1, ..., αn) ≤ g(α1, ..., αn−1).

Using the upper bound of Theorem 2.1, we present a new algorithm for calculating Frobenius numbers.
More precisely, since g(α1, ..., αn) ≤ g(α1, α2) = α1α2 −α1 −α2, we compute the number α1α2 −α1 −α2

and using one sub-algorithm examine the natural numbers less than g(α1, α2) are representable respect to
α1, ..., αn. Obviously the largest number less than α1α2 −α1 −α2 which dose not have a representation, is
the Frobenius number of α1, ..., αn. This sub-algorithm determines whether a number has a representation
or not compared to the desired numbers. After that, we apply another algorithm to compute the Frobenius
number of α1, ..., αn.
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Abstract

A (3,6)-fullerene graph is 3-connected or 2-connected, 3-regular and, planar graph with triangles
and hexagon faces. A set of edges of a graph G is named a matching if no two edges of it have a vertex
in common. In this paper, we investigate matchings of k edges in (3,6)-fullerene graphs and calculate
the number of these matchings.

1 Introduction

A (3,6)-Fullerene graph is a cubic, 2 or 3-connected planar graph which have four triangular faces. (3,6)-
Fullerenes can have isolated or adjacent triangles and, on this basis, divided into two categories. (3,6)-
fullerenes with isolate triangles are called non-trivial and (3,6)-fullerenes with a pair of adjacent triangles
are known as trivial. Every (3,6)-fullerene is determined by an ordered triple (r, s, t) of non-negative
integers, where r is the number of layers of hexagons, s is the number of radial edges in each layer, and t
is the twist. For a systematic introduction to fullerene graphs, we refer the reader to [1, 2].

A set of edges of graph G is a matching if no two edges of it have a vertex in common. A matching in
a graph G is perfect if each vertex of G is incident with an edge from said matching. In 1891, Petersen
established that every 3-regular graph with no more than two cut-edges has a perfect matching, which
shows that all fullerene graphs have perfect matchings [3]. A k-matching in a graph G is a set of (not
adjacent) k edges of G.

In the following section, we investigate the number of k-matching in some (3,6)-fullerene graphs in
terms of the number of hexagons.

2 Main results

In this section, we state some new results on the number of low order matching in (3,6)-fullerene graphs.
First, let’s state the two following lemmas about three, four and six-length cycles.

Lemma 2.1. Let G is a (3,6)-fullerene graph.
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• If C is a 3-cycle in G, then C must be a facial cycle.

• If G is a non-trivial (3,6)-fullerene graph then it has no cycle of length four.

• If C is a 6-cycle in G, then C must be a facial cycle.

Lemma 2.2. For a trivial (3,6)-fullerene graph G, if C is a 4-cycle in G, then C is the either

• The boundary of dual triangles.

• The boundary of three triangles with a common vertex.

• The boundary of a dual triangle with hexagon layers.

Figure 1: Dual triangle and three triangles with a common vertex.

Now, let G be a (3,6)-fullerene graph and t, h, n, and m be the number of triangles, hexagons, vertices,
and edges of G, respectively. We denote the number of k-path (path of length k) by Pk(G) and we have
the following theorem.

Theorem 2.3. Let G is a (3,6)-fullerene graph, then

• P1(G) = 3h + 6
• P2(G) = 6h + 12
• P3(G) = 12h + 12
Considering two trivial and non-trivial cases of G, we will have the following theorem.

Theorem 2.4. Let G is a (3,6)-fullerene graph, then we have

• P4(G) =
⎧⎪⎪⎨⎪⎪⎩

22h + 8, G is trivial

24h + 24, G is non-trivial

• P5(G) =
⎧⎪⎪⎨⎪⎪⎩

40h − 4, G is trivial

48h + 12, G is non-trivial

If M(G,k) be the number of k-matching in G then we have the following theorem.

Theorem 2.5. Let G is a (3,6)-fullerene graph, then we have

M(G,1) = 3h + 6

M(G,2) = 9

2
h2 + 21

2
h + 3

M(G,3) = 9

2
h3 + 9

2
h2 + 7h + 40

In the last Theorem of this paper, we get the values of M(G,k), for k = 4.
Theorem 2.6. Let G be a trivial (3,6)-fullerene graph, then

M(G,4) =
⎧⎪⎪⎨⎪⎪⎩

27
8
h4 − 27

4
h3 + 33

8
h2 + 61

4
h − 102, G is trivial

27
8
h4 − 27

4
h3 + 33

8
h2 + 57

4
h − 110, G is non-trivial

In the case that h = 2, M(G,4) = 5.
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Abstract

Let G be a graph with the vertex set {v1, . . . , vn}. The Randić index of G is defined as R(G) =
∑uv∈E(G)

1√
dudv

, where du = d(u). In this talk, we prove that for every acyclic and unicyclic graph

G with at least one edge, R(G) > α′(G)√
2

, for every subcubic G, R(G) ≥ ( 1√
3
+ 1

3
)α′(G), and for every

planar G, R(G) > α′(G)
6
√

42
, where α′(G) is the matching number of G.

Joint work with: S. Akbari, S. Ghasemi Nezhad, R. Ghazizadeh, J. Haslegraehve

1 Introduction

For a graph G, we denote the set of its vertices and edges by V (G) and E(G), respectively. The degree
of a vertex v is denoted by du, and NG(v) denotes the set of all neighbors of v. For two arbitrary vertices
u and v of this graph, by u ∼ v, we mean that u and v are adjacent. We also denote the degree of a vertex
u by du.

For a simple graph G, we define the Randić index by R(G) = ∑i∼j
1√
didj

. In 1975, the chemist Milan

Randić proposed a topological index R under the name branching index, suitable for measuring the extent
of branching of the carbon-atom skeleton of saturated hydrocarbons [1, 2]. Also, we denote the matching
number of G by α′(G).

In this talk we prove that for every acyclic or unicyclic graph G with at least one edge, R(G) > α′(G)√
2

,

for every subcubic graph, R(G) ≥ ( 1√
3
+ 1

3
)α′(G), and for every planar G, R(G) ≥ α′(G)

6
√
42

.

2 Main results

Let us start with the following result.

Theorem 2.1. If T is a tree of order at least two, then R(T ) > α′(T )√
2

.
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Then, we have two immediate corollaries.

Corollary 2.2. If F is a forest with at least one edge, then R(F ) > α′(F )√
2

.

Corollary 2.3. For a uni cyclic graph U , we have R(U) > α′(G)√
2

.

The following interesting result was proved in [3].

Theorem 2.4. Let G be a graph of order n. Then R(G) ≥
√
δ∆

δ+∆ n.

Now, we prove the following theorem.

Theorem 2.5. Let G be a subcubic graph of order n. Then R(G) ≥ ( 1√
3
+ 1

3
)α′(G) and equality holds if

and only if G =H ○K2, for even n and G = (H ○K2) ∪K1, for odd n, where H is a 2-regular graph.

At the end, we prove the following theorem.

Theorem 2.6. Let c > 0 be a real number and G be a graph. Let V + = {v ∈ V (G) ∣dv > c} and V − = {v ∈
V (G) ∣dv ≤ c}. Then if the average degree of the vertices in G[V +] is at most c, we have R(G) ≥ α′(G)

c
√

c(c+1)
.

Corollary 2.7. For a planar graph G, we have R(G) ≥ α′(G)
6
√
42

.
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Abstract

Let k be a positive integer and G be a simple graph with vertex set V . A Nk-valued Roman
dominating function (in abbreviation, Nk-RDF) on G is a labeling f ∶ V → {0,1,2, . . . , k} such that for
every vertex v ∈ V with label 0, there is a vertex u ∈ V with label f(u) ≥ 1 at distance at most f(u)− 1
from each other. The weight of a Nk-valued Roman dominating function f is the value ω(f) = ∑v∈V f(v)
over all such functions f . The Nk-valued Roman domination number of a graph G, denoted by Γk(G),
equals the minimum weight of a Nk-valued Roman dominating function on G. Note that the N2-valued
Roman domination number Γ2(G) is the usual Roman domination number γR(G). In this paper, we
investigate properties of the Nk-valued Roman domination number.

1 Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). Denote by Kn

the complete graph, by Cn the cycle and by Pn the path of order n, respectively. The complement of a
graph G is denoted by Ḡ. Given two graphs G1 and G2 such that V (G1)∩V (G2) = ∅, the disjoint union
is the graph G1 ∪G2 with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). For two vertices x
and y, let d(x, y) denote the distance between x and y in G. The eccentricity e(v) of v is defined by
e(v) =max{d(v, x) ∣ x ∈ V }. The radius rad(G) of G and the diameter diam(G) are defined as follows:

rad(G) =min{e(v) ∣ v ∈ V } and diam(G) =max{e(v) ∣ v ∈ V }.

The girth g(G) of a graph G is the length of its shortest cycle.
Let k be a positive integer. For a vertex v ∈ V , the open k-neighborhood Nk,G(v) is the set {u ∈

V ∣ u ≠ v and d(u, v) ≤ k} and the closed k-neighborhood Nk,G[v] is the set Nk,G(v) ∪ {v}. The open
k-neighborhood Nk,G(S) of a set S ⊆ V is the set ⋃v∈SNk,G(v), and the closed neighborhood Nk,G[S] of S
is the set Nk,G(S)∪S. The k-degree of a vertex v is defined as degk,G(v) = ∣Nk,G(v)∣. The minimum and
maximum k-degree of a graph G are denoted by δk(G) and ∆k(G), respectively. If δk(G) =∆k(G), then
the graph G is called distance-k-regular.
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2 Main results

Lemma 2.1. [2] For any tree T of order n ≥ 3, γR(T ) ≥ 4n/5.

Lemma 2.2. [5] For any connected graph G with diameter d and any positive integer k,

Γk(G) ≥ ⌈
1

2
(d + 1 + ⌈ d + 1

2k − 1
⌉)⌉ .

Lemma 2.3. [1] Let G be a graph of order n. Then γR(G) = n if and only if G = rK1 ∪ sK2 for some
integers r, s ≥ 0.

The next observations are straightforward to verify.

Proposition 2.4. For any graph G and any positive integer k ≥ 2,

Γk(G) ≤ . . . ≤ Γ3(G) ≤ Γ2(G) = γR(G).

Proposition 2.5. For any graph G of order n and maximum degree ∆ ≥ 1,

Γk(G) ≥ ⌈
kn

(k − 1)∆ + 1
⌉ .

Proof. Since each vertex with value k dominates at most ∆(k − 1) + 1 vertices, so the desired result
obtain.

The special case k = 2 of Proposition 2.5 can be found in [3].

Proposition 2.6. Let k ≥ 2 be an integer and let G be a graph of order n. Then Γk(G) = n if and only
if G = rK1 ∪ sK2 for some integers r, s ≥ 0.

Proof. If G = rK1 ∪ sK2 for some integers r, s ≥ 0, then obviously Γk(G) = n. Conversely, assume that
Γk(G) = n. Then Observation 2.4 leads γR(G) = n. Thus from Proposition 2.3, G = rK1 ∪ sK2 for some
integers r, s ≥ 0.

Proposition 2.7. If k ≥ 2 is an integer and G is a graph of order n with ∆k−1(G) ≥ 1, then Γk(G) ≤
n −∆k−1(G) + k − 1.

Proof. Let v be a vertex of G such that degk−1,G(v) =∆k−1(G).
Then f = (Nk−1,G(v), V (G) −Nk−1,G[v],∅, . . . ,∅, v) is a Nk-RDF on G with weight n −∆k−1(G) + k − 1
and therefore Γk(G) ≤ n −∆k−1(G) + k − 1.

Proposition 2.8. Let G be a graph of order n ≥ 4. Then Γ3(G) = 3 if and only if either diam(G) = 3 or
diam(G) = 4.

Proof. If diam(G) = 3 or diam(G) = 4, then by Observation ??, Γ3(G) ≤ 3. Moreover, it follows from
Proposition 2.2 that Γ3(G) ≥ 3. Thus Γ3(G) = 3.

Now suppose that Γ3(G) = 3. If diam(G) ≤ 2, then it is not hard to see that Γ3(G) = 2. Let
diam(G) ≥ 3. If diam(G) ≥ 5, then by Proposition 2.2, we have Γ3(G) ≥ 4, a contradiction.

The following two classes of graphs achieve the lower bound of Proposition 2.5. Proof is straightforward
and is omitted.

Proposition 2.9. For n ≥ 3,
Γk(Cn) = Γk(Pn) = ⌈

kn

2k − 1
⌉ .

For the class of complete multipartite graphs Km1,...,mn there are two cases to consider.
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Proof. Let Cn = (v1, v2, . . . , vn) be a cycle on n vertices. By Proposition 2.5, Γk(Cn) ≥
Case 1. n ≡ 0 (mod 2k − 1).
Define g ∶ V (Cn) → {0,1,2, . . . , k} by g(vi) = k if i ≡ k(mod 2k − 1) and g(vi) = 0 otherwise. It is easy to
see that g is a Nk-RDF on Cn with weight kn

2k−1 and hence Γk(Cn) = kn
2k−1 .

Case 2. n ≡ t ≠ 0(mod 2k − 1).
Define g ∶ V (Cn) → {0,1,2, . . . , k}, by g(vi) = k for 1 ≤ i ≤ n−t

2k−1 , g(v n−t
2k−1+⌊

t
2 ⌋
) = ⌊ t

2
⌋ + 1 and g(vi) = 0

otherwise. Then, g is a Nk-RDF on Cn with weight k(n−t)
2k−1 + ⌊ByProposition2.5,Γk(Cn) ≥ kn

2k−1 =
k(n−t)
2k−1 +

kt
2k−1 =

k(n−t)
2k−1 +

t
2
+ t/2

2k−1 .SinceΓk(Cn) is an integer, we have Γk(Cn) ≥ k(n−t)
2k−1 + ⌊

Proposition 2.10. For n ≥ 2,

Γk(Pn) = {
kn

2k−1 n ≡ 0 (mod 2k − 1)
k(n−t)
2k−1 + ⌊

t
2
⌋ + 1 n ≡ t ≠ 0 (mod 2k − 1)

Proposition 2.11. If k ≥ 2 is an integer and G a connected graph of order n ≥ 3 and ∞ > g(G) ≥ 2k − 1,
then

Γk(G) ≥ ⌈
kg(G)
2k − 1

⌉ .

Proof. If G is an n cycle then the result follows from Proposition 2.9. Now, let C be a cycle of length
g(G) in G and let f = (V0, V1, V2, . . . , Vk) be a Nk-RDF. Since each vertex in V (C) dominates at most
2k − 1 vertex of V (C), we have

Γk(G) =
k

∑
i=1
i∣Vi∣ ≥ k∣Vk ∣ ≥

kg(G)
2k − 1

.

This leads to the desired bound, and the proof is complete.

The special case k = 2 of Proposition 2.11 can be found in [5].
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Abstract
Let G = (V,E) be a simple graph of order n and size m. A connected edge cover set of a graph

is a subset S of edges such that every vertex of the graph is incident to at least one edge of S and
the subgraph induced by S is connected. The connected edge cover polynomial of G is the polynomial
Ec(G,x) = ∑m

i=1 ec(G, i)xi, where ec(G, i) is the number of connected edge cover set of size i. We
investigate this polynomial for some graphs.

1 Introduction

Let G = (V,E) be a simple graph. The order and the size of G is the number of vertices and the number
of edges of G, respectively. For every graph G with no isolated vertex, an edge covering of G is a set of
edges of G such that every vertex is incident with at least one edge of the set. In other words, an edge
covering of a graph is a set of edges which together meet all vertices of the graph. A minimum edge
covering is an edge covering of the smallest possible size. The edge covering number of G is the size of a
minimum edge covering of G and denoted by ρ(G). We let ρ(G) = 0, if G has some isolated vertices. For
a detailed treatment of these parameters, the reader is referred to [1, 2, 3, 4]. Let E (G, i) be the family
of all edge coverings of a graph G with cardinality i and let e(G, i) = ∣E (G, i)∣. The edge cover polynomial
E(G,x) of G is defined as

E(G,x) =
m

∑
i=ρ(G)

e(G, i)xi,

where ρ(G) is the edge covering number of G. Also, for a graph G with some isolated vertices we define
E(G,x) = 0. Let E(G,x) = 1, when both order and size of G are zero (see [1]).

In [1] authors have characterized all graphs whose edge cover polynomials have exactly one or two
distinct roots and moreover they proved that these roots are contained in the set {−3,−2,−1,0}. In [2],
authors constructed some infinite families of graphs whose edge cover polynomials have only roots −1 and
0. Also, they studied the edge coverings and edge cover polynomials of cubic graphs of order 10. As a
consequence , they have shown that the all cubic graphs of order 10 (especially the Petersen graph) are
determined uniquely by their edge cover polynomials.

Motivated by the edge cover number and polynomial, we consider the following definition.
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Definition 1.1. A connected edge cover set of graph G is a subset S of edges such that every vertex of G
is incident to at least one edge of S and the subgraph induced by S is connected. The connected edge cover
number of G is equal to the minimum cardinality of the connected edge cover and is denoted by ρc(G).

Also, we state the following definition for the connected edge cover polynomial.

Definition 1.2. The connected edge cover polynomial of G is the polynomial

Ec(G,x) =
m

∑
i=1
ec(G, i)xi,

where ec(G, i) is the number of connected edge cover set of size i.

For two graphs G and H, the corona G ○H is the graph arising from the disjoint union of G with
∣V (G)∣ copies of H, by adding edges between the ith vertex of G and all vertices of ith copy of H. The
corona G ○K1, in particular, is the graph constructed from a copy of G, where for each vertex v ∈ V (G),
a new vertex u and a pendant edge {v, u} are added. It is easy to see that the corona operation of two
graphs does not have the commutative property.

In this paper, we obtain the connected edge cover polynomial for certain graphs.

2 Main results

Here, we state some new results on the connected edge cover number and the edge cover polynomial.

Theorem 2.1. (i) For every natural numbers n, ρc(Kn) = n − 1.
(ii) For every natural numbers n ≥ 4, Ec(Kn, x) = E(Kn, x) −∑n−2

i=⌈n/2⌉ e(Kn, i)xi.

Theorem 2.2. For every natural numbers n ≥ 3,
(i) ρc(Cn) = n − 1.
(ii) Ec(Cn, x) = ∑n

i=n−1 (
n
i
)xi.

(iii) ρc(Pn) = n − 1.
(iv) Ec(Pn, x) = xn−1.

Theorem 2.3. For every natural numbers n ≥ 2,
(i) ρc(Pn ○K1) = 2n − 1.
(ii) Ec(Pn ○K1, x) = x2n−1.
(iii) For every natural numbers n ≥ 3, ρc(Cn ○K1) = 2n − 1.
(ii) Ec(Cn ○K1, x) = x2n + 2nx2n−1.
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Abstract

In this paper, we study a family of graphs which is related to Johnson graphs. These graphs are
called bipartite Kneser graphs. Let n and k be integers with n > k ≥ 1. We denote by H(n, k) the
bipartite Kneser graph, that is, a graph with the family of k-subsets and (n − k)-subsets of the set
[n] = {1,2, ..., n} as its vertex-set, in which any two vertices are adjacent if and only if one of them is
a subset of the other. Mirafzal (Mirafzal SM, The automorphism group of the bipartite Kneser graph,
Proc. Indian Acad. Sci. (Math. Sci). Forthcoming Articles), proved that the automorphism group
of the bipartite Kneser graph H(n, k) is isomorphic to Sym([n]) × Z2. In this paper, we study the
distance-transitivity and the diameter of the bipartite Kneser graphs. In fact, we will show that for
which n, the bipartite Kneser graph H(n, k) is a distance-transitive graph.

1 Introduction

In this paper, a graph Γ = (V,E) is considered as a finite undirected simple graph, where V = V (Γ) is the
vertex-set and E = E(Γ) is the edge-set. The degree of each vertex v ∈ V (Γ), is the number of neighbours
of v in Γ and denoted by deg(v). A graph Γ = (V,E) is called k-regular (or regular graph with degree
k), if deg(v) = k for every v ∈ V (Γ). Let u, v be two vertices in (connected) graph Γ. Then the length of
the shortest path from u to v is called the distance between u, v and denoted by dΓ(u, v) (if there is no
misunderstand, we use d(u, v) instead of dΓ(u, v)). For all the terminologies and notations which are not
defined here, we follow [3, 5, 9].

Definition 1.1. Let [n] = {1,⋯, n} be a set of size n. Let m be an integer such that 2m ≤ n. Then the
Johnson graph J(n,m) is the graph with the vertex-set consist of all m-subsets (subsets of size m) of [n],
and two vertices u, v are adjacent if and only if ∣u ∩ v∣ =m − 1.

The number of vertices of J(n,m) is equal to (n
m
). Furthermore, the Johnson graph J(n,m) is a

regular graph with degree m(n−m) (see [3] or [5]). For more information about Johnson graphs you can
see [1, 7].
The Kneser graph K(n, k) is the graph with the vertex-set consist of all k-subsets of [n]. Two vertices
are adjacent if they are disjoint when considered as k-sets.
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Definition 1.2. For a positive integer n > 1, let [n] = {1,2, ..., n} and V be the set of all k-subsets and
(n − k)-subsets of [n]. The bipartite Kneser graph H(n, k) has V as its vertex-set, and two vertices A,B
are adjacent if and only if A ⊂ B or B ⊂ A. That is, A is adjacent to B if A and Bcare disjoint, where
Bc is defined to be Bc = [n] −B.

The bipartite Kneser graph H(n, k) is a regular bipartite graph with the degree (n−k
k
). For more

information about bipartite Kneser graphs, you can see [9, 10].
Ya-Chen Chen [4] showed that the Kneser graph K(n, k) is Hamiltonian for n ≥ 3, where (3k

k
) is odd.

Also in [4] it is stated that, Savage and Shields showed that H(2k + 1, k) is Hamiltonian for k ≤ 15. The
bipartite Kneser graph H(2n − 1, n − 1) is known as the middle cube MQ2n−1 [6] or regular hyper-star
graph HS(2n,n) [8].

Let Γ = (V,E) be a graph. Then the mapping f ∶ V Ð→ V is called an automorphism of Γ if and
only if f is a bijection map and f preserve the adjacency of vertices in Γ. The set of all automorphisms
of Γ with the operation of composition of functions is a group, called the automorphism group of Γ and
denoted by Aut(Γ). Oftentimes, determining the automorphism group of the graphs is difficult. There
are various papers in the literature, and some of the recent works appear in the references [7, 9].

The graph Γ is called vertex-transitive, if Aut(Γ) acts transitively on V (Γ). For v ∈ V (Γ) and
G = Aut(Γ), the stabilizer subgroup Gv is the subgroup of G consisting of all automorphisms that fix
v. We say that Γ is symmetric (or arc-transitive) if, for all vertices u, v, x, y of Γ such that u and v are
adjacent, also, x and y are adjacent, there is an automorphism α in Aut(Γ) such that α(u) = x and
α(v) = y. We say that Γ is distance-transitive if, for all vertices u, v, x, y of Γ such that d(u, v) = d(x, y),
there is an automorphism β ∈ Aut(Γ) satisfying β(u) = x and β(v) = y.

In this paper, we study about the distance-transitivity of bipartite Kneser graphs. In [3] we can see
that the Kneser graphs and Johnson graphs are distance-transitive graph.

2 Main results

In this section, we study about the diameter and distance-transitivity of the bipartite Kneser graphs. By
Lemma 3.2. from [9], the bipartite Kneser graph H(n, k) is a symmetric graph. Furthermore, by theorem
3.9. of [9] we know that the automorphism group of bipartite Kneser graph H(n, k) is isomorphic to
Sym([n]) ×Z2.

Let Γ = (V,E) be a graph and v ∈ V (Γ) = V be a vertex of Γ. Let diam(Γ) = d, then for each i = 0,⋯, d
we denote the set of all vertices at distance i from v, by Γi(v). In other words,

Γi(v) = {u ∈ V ∣ d(u, v) = i}.

Lemma 2.1. [2] A connected graph Γ with the diameter d and automorphism group G = Aut(Γ) is
distance-transitive if and only if it is a vertex-transitive graph and the vertex-stabilizer Gv acts transitively
on the set Γi(v), for all i ∈ {0,⋯, d}, and each v ∈ V (Γ).

Proposition 2.2. Let k be an integer and n = 2k + 1. Let Γ = (V,E) =H(n, k) be bipartite Kneser graph
with vertex-set partition V = V1∪V2, V1∩V2 = ∅, where V1 = {v ⊂ [n]∣ ∣v∣ = k} and V2 = {v ⊂ [n]∣ ∣v∣ = k+1}.
Let u, v ∈ V be two vertices in V such that ∣u ∩ v∣ = i, then we have the following cases;

(1) If u, v ∈ V1, then d(u, v) = 2(k − i);
(2) If u ∈ V1 and v ∈ V2, then d(u, v) = 2(k − i) + 1;
(3) If u, v ∈ V2, then d(u, v) = 2(k + 1 − i).

Theorem 2.3. Let n = 2k + 1.Then the graph H(n, k) is a distance-transitive graph.

Proposition 2.4. Let k ≥ 2 be an integer and n ≥ 3k. Then the diameter of bipartite Kneser graph
H(n, k) is equal to 4.

Proposition 2.5. Let k ≠ 1 be an integer and 2k + 1 < n < 3k. Then the diameter of bipartite Kneser
graph H(n, k) is equal to 6.
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Proposition 2.6. Let n ≥ 3 be an integer. Then the diameter of bipartite Kneser graph H(n,1) is equal
to 3.

Corollary 2.7. Let k ≥ 2 be an integer and n ≠ 2k + 1. Then the bipartite Kneser graph H(n, k) is not
distance-transitive.

Theorem 2.8. Let n ≥ 3 be an integer. Then the bipartite Kneser graph Γ = H(n,1) is a distance-
transitive graph.
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